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CONVERSION FACTORS

The HST3D simulator program performs calculations in metric units.
However, it will accept input and produce output in inch-pound units. The
conversion factors are listed below:

Multiply

kilogram (kg)
meter (m)
millimeter (mm)
second (s)
degree Celsius (°C)
Kelvin (K)
Joule (J) or Watt-
second (W-s)
square meter (m?)
cubic meter (m3)
meter~second (m-s)
Pascal (Pa)

meter per second (m/s)

square meter per second
(m?/s)

cubic meter per second
(m3/s)

liter per second (£/s)

kilogram per second
(kg/s)

Pascal per second
(Pa/s)

cubic meter per cubic
meter-second (m3/m3-s)

kilogram per cubic
meter (kg/m3)

Watt per cubic meter

(W/m3)

Joule per kilogram
(J/kg)

Joule per kilogram
(I/kg)

cubic meter per kilogram
(m3/kg)

cubic meter per square
meter-second (m3/m2-s)

Watt per square meter

(W/m?)

kilogram per square
meter-second (kg/m2-s)

By

2.204622
3.280840
3.937008 x 1072
1.157407 x 1075
T(°F) = 1.8T(°C) + 32
T(°F) = 1.8T(K) - 459.67
9.478170 x 1074

10.76391
35.31466
3.797267 x 1075
1.450377 x 10™4

105
105

2.834646
9.300018

X X

10€

X

3.051187

X

3.051187 x 10%
1.904794 x 105
12.53126
8.6400 x 104
6.242797 x 1072

9.662109 x 1072

4.299226 x 1074

0.3345526

16.01846
2.834646 x 105

0.3169983

1.769611 x 104

vii

To obtain

pound (1b)

foot (ft)

inch (in.)

day (d)

degree Fahrenheit (°F)

degree Fahrenheit (°F)

British Thermal Unit
(BTU)

square foot (ft2)

cubic foot (ft3)

foot-day (ft-d)

pound per square inch
(psi)

foot per day (ft/d)

square foot per day
(ft2/d)

cubic foot per day
(££3/4)

cubic foot per day
(ft3/4d)

pound per day (1b/d)

pound per square inch
per day (1b/in?/d)

cubic foot per cubic
foot-day (ft3/ft3-d)

pound per cubic foot
(1b/ft3)?

British Thermal Unit
per hour-cubic
foot (BTU/h-ft3)

British Thermal Unit
per pound (BTU/1b)

foot-pound force per
pound mass
(ft-1bf/1bm)

cubic foot per pound
(ft3/1b)

cubic foot per square
foot-day (ft3/ft2-4d)

British Thermal Unit
per hour-square foot
(BTU/h-£t?)

pound per fquare
foot-day (1b/ft2?-d)
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cubic meter per meter-second
(m3/m-s)

kilogram per meter-second
(kg/m-s)

Joule per kilogram-meter
(J/kg-m)

Watt per meter-degree

Celsius (W/m-°C)

Watt per square meter-
degree Celsius (W/m2?-°C)

Joule per kilogram-
degree Celsius (J/kg-°C)

Joule per cubic meter-degree
Celsius (J/m3-°C)

cubic meter per second-meter-
Pascal (m3/s-m-Pa)

9.300018 x 10°

1,000

1.310404 x 1074

13.86941

0.1761102

2.388459 x 1074

1.491066 x 105

6.412138 x 10°

1 A weight density rather than a mass density.
2 Not inch-pound but common usage.

viii

cubic foot per foot-day
(ft3/£ft-d)
centipoise (cP)?

British Thermal Unit
per pound-foot
(BTU/1b-ft)

British Thermal Unit
per foot-hour-degree
Fahrenheit
(BTU/ft-h-°F)

British Thermal Unit
per hour-square
foot-degree Fahrenheit
(BTU/h-£ft2-°F)

British Thermal Unit
per pound-degree
Fahrenheit
(BTU/1b-°F)

British Thermal Unit
per cubic foot-degree
Fahrenheit
(BTU/£ft3-°F)

cubic foot per day-
foot-pound-square
inch (ft3/d-ft-psi)




HST3D: A COMPUTER CODE FOR SIMULATION OF HEAT AND SOLUTE TRANSPORT

IN THREE-DIMENSIONAL GROUND-WATER FLOW SYSTEMS

By Kenneth L. Kipp Jr.

ABSTRACT

The Heat- and Solute-Transport Program (HST3D) simulates ground-water
flow and associated heat and solute transport in three dimensions. The HST3D
program may be used for analysis of problems such as those related to sub-
surface-waste injection, landfill leaching, saltwater intrusion, freshwater
recharge and recovery, radioactive-waste disposal, hot-water geothermal
systems, and subsurface-energy storage. The three governing equations are
coupled through the interstitial pore velocity, the dependence of the fluid
density on pressure, temperature, and solute-mass fraction, and the dependence
of the fluid viscosity on temperature and solute-mass fraction. The solute-
transport equation is for only a single, solute species with possible linear-
equilibrium sorption and linear decay. Finite-difference techniques are used
to discretize the governing equations using a point-distributed grid. The
flow-, heat- and solute-transport equations are solved, in turn, after a
partial Gauss-reduction scheme is used to modify them. The modified equations

are more tightly coupled and have better stability for the numerical solutions.

The basic source-sink term represents wells. A complex well-flow model
may be used to simulate specified flow rate and pressure conditions at the
land surface or within the aquifer, with or without pressure and flow-rate
constraints. Boundary-condition types offered include specified value,
specified flux, leakage, heat conduction, an approximate free surface, and two
types of aquifer-influence functions. All boundary conditions can be

functions of time.



Two techniques are available for solution of the finite-difference matrix
equations. One technique is a direct-elimination solver, using equations
reordered by alternating diagonal planes. The other technique is an iterative
solver, using two-line successive overrelaxation. A restart option is
available for storing intermediate results and restarting the simulation at an
intermediate time with modified boundary conditions. This feature also can be

used as protection against computer-system failure.

Data input and output may be in metric (SI) units or inch-pound units.
Output may include tables of dependent variables and parameters, zoned-contour
maps, and plots of the dependent variables versus time. The HST3D program is
a descendant of the Survey Waste Injection Program (SWIP) written for the U.S.

Geological Survey under contract.




1. INTRODUCTION

1.1. OVERVIEW OF THE SIMULATOR

The computer program (HST3D) described in this report simulates heat and
solute transport in three-dimensional saturated ground-water flow systems.
The equations that are solved numerically are: (1) The saturated ground-water
flow equation, formed from the combination of the conservation of total-fluid
mass and Darcy's Law for flow in porous media; (2) the heat-transport equation
from the conservation of enthalpy for the fluid and porous medium; and (3) the
solute-transport equation from the conservation of mass for a single-solute
species, that may decay and may adsorb onto the porous medium. These three
equations are coupled through the dependence of advective transport on the
interstitial fluid-velocity field, the dependence of fluid viscosity on
temperature and solute concentration, and the dependence of fluid density on

pressure, temperature, and solute concentration.

Numerical solutions are obtained for each of the dependent variables:
pressure, temperature, and mass fraction (solute concentration) in turn, using
a set of modified equations that more directly link the original equations
through the velocity-, density-, and viscosity-coupling terms. Finite-
difference techniques are used for the spatial and temporal discretization of
the equations. When supplied with appropriate boundary and initial conditions
and system-parameter distributions, simulation calculations can be performed

to evaluate a wide variety of heat- and solute-transport situations.

The computer code (HST3D) described in this documentation is a descendant
of a computer code for calculating the effects of liquid-waste disposal into
deep, saline aquifers, developed by INTERCOMP Resource Development and
Engineering Inc. 1976) for the U.S. Geological Survey and revised by INTERA
Environmental Consultants Inc. (1979). The parent code, known as the Survey
Waste Injection Program (SWIP), has been completely rewritten with many major
and minor modifications, improvements, and correction of several errors.

Features included in HST3D are briefly described as follows:



10.

11.

12.

Specified-value and specified-flux boundary conditions
are independent of each other and independent of the well
or aquifer-influence-function boundary conditions. The
boundary conditions also may vary with time.

Specified heat- and solute-flux boundary conditions are available.

The leakage boundary conditions are generalized and a river-
leakage boundary condition is available.

Porous-medium thermal properties, dispersivity, and
compressibility, may have spatial variation defined by zones.

A point-distributed, finite-difference grid is employed, rather than
a cell- or block-centered grid, for less truncation error and
easier incorporation of boundary conditiomns.

The heat-conduction boundary condition is generalized to apply
to any cell face.

Global-flow, and heat- and solute-balance calculations are performed
including flux calculations through specified pressure, temper-
ature, and mass-fraction boundaries.

A robust algorithm for the computation of the optimum
overrelaxation factor for the two-line, successive-overrelaxation,
matrix-solution method is used, with a convergence
criterion that includes the matrix spectral-radius estimate.

The code is organized for a logical flow of calculation and a
modular structure. _

The code length is about 12,000 lines, using FORTRAN 77
language constructs for cleaner, more efficient coding than
possible with FORTRAN 66. However, clarity has not been >
sacrificed for ultimate efficiency.

Comments have been included liberally for ease of understanding
the program.

All arrays with lengths depending on the size of the problem are
in two variably-partitioned arrays, integer and real, to facilitate

double-precision arithmetic.
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13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24,
25.

Arrays required for thermal or solute calculations exclusively are
eliminated if only one of these transported quantities is being
simulated, which results in a considerable decrease in computer
storage.

Arrays used for a specific type of boundary condition or source-sink
condition are dimensioned only to the length required.

The allocation of space for the direct-equation solver is
explicitly determined during array-space allocation, rather
than estimated.

Logical variables are used to control the flow of program execution
for ease of option selection.

The input file is in free-format to facilitate input from terminals.

The input file is organized into logical groups for parameter
specifications.

User comments can be freely incorporated into the input file
for rapid identification of the data. An input-file form
is available which the user can fill out at the terminal for a
given simulation.

A read-echo file may be written to aid in locating errors in the
data-input file.

Character plots of the porous-media zones may be created on the
output file to facilitate checking the zonation.

Although the internal calculations of the program are performed in
metric units, the input and output can be chosen to be in
inch-pound units.

The output material is made easily understandable by avoiding
variable names, by logical grouping on the page, and by
including supplementary information.

Error tests are included to catch likely mistakes in data input.

Error messages are printed explicity rather than as code numbers.



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

There is no limit on the number of plots that can be created.
The number of calculated points in time per plot is limited to
three times the total number of grid points, while the number
of observed points in time is limited to two times the number
of grid points. The user can select every nth point to be
plotted, if this number is limiting.

The solute concentration can be chosen to be the mass fraction
or a scaled mass fraction that ranges from 0 to 1. This choice
was available in the SWIP code, but the user was not clearly made
aware of which option was selected.

Two types of restart option are available: a periodic check-point
dump for protection against computer-system failure, and a
specific dump for user review and possible modification of
parameters.

Map-contour intervals can be automatically determined to be a
multiple of 2, 5, or 10, and the contour zones are "zebra striped"
for easier reading.

Initial-pressure conditions can be specified to be other than
hydrostatic. For example, an initial water-table
configuration can be used.

The precipitation-infiltration option is contained in the
distributed flux-boundary conditions.

The conductive-heat-loss to overburden and underburden is a
general, heat-transfer calculation, applicable to any
cell face in the region.

The well-riser, heat-transfer calculation is based on heat
transfer from a known-temperature, cylindrical boundary, and
higher order assymptotic expansions have been used.

The well-riser calculation has been formulated to solve the
total-energy and momentum balance equations simultaneously,
using the Bulirsch-Stoer algorithm for integration of the
ordinary differential equations.

The well-bore equations are implicitly coupled to the system

equations for cases of cylindrical geometry.



36. The well-datum pressure and the well-flow rate allocation
calculations may be performed iteratively in conjunction with
the solution of the flow equation, or explicitly.

37. The full nine-component, or an approximate three-component,

dispersion-coefficient tensor may be used for cross-dispersive

flux calculations.

The purpose of simulation modeling the transport of heat and solute in
ground-water flow systems is to gain a quantitative understanding of how the
sources and sinks, the boundary conditions, and the aquifer parameters
interact to cause ground-water flow patterns and consequent thermal- and
solute-concentration movement in a system under investigation. Of particular
interest are the magnitudes of concentrations and discharges at interfaces
with the environment, for example, in cases of aquifer contamination.
Naturally, the quality or degree of realism of a given simulation is strongly
dependent on the quantity and quality of the parameter distribution, boundary-
condition, and source~sink data. Acquiring this data can be a major task of

the modeling project.

1.2. APPLICABILITY AND LIMITATIONS

The HST3D code is suitable for simulating ground-water flow and the
associated heat and solute transport, in saturated, three-dimensional flow
systems with variable density and viscosity. As such, the code is applicable
to the study of waste injection into saline aquifers, landfill-contaminant
movement, seawater intrusion in coastal regions, brine disposal, fresh-water
storage in saline aquifers, heat storage in aquifers, liquid-phase geothermal
systems, and similar transport situations. If desired, only the ground-water
flow or only the heat- or the solute-transport equation may be solved in
conjunction with ground-water flow. Three-dimensional cartesian or

axisymmetric, cylindrical-coordinate systems are available.

The primary limitation of this code results from the use of finite-

difference techniques for the spatial- and temporal-derivative approximations.



Where longitudinal and transverse dispersivities may be small, cell sizes will
need to be small to minimize numerical dispersion or oscillation. Further-
more, if the region of solute movement is somewhat convoluted and three-
dimensional, the projection of nodal lines from regions of high-nodal density
will cause more nodes than are needed to appear in other regions. These two
factors can combine to cause an excessive number of nodes to be involved for a
given simulation, thus making the simulation prohibitively expensive because
of computer-storage and computation-time requirements. In such cases, a
simple model of the system, useful for investigating mechanisms and testing

hypotheses, may be all that is practical.

Another limitation results from a phenomenon called grid-orientation
effect (Aziz and Settari, 1979, p. 332), whereby numerical simulations of
miscible displacement converge to two separate solutions, as the mesh size is
refined, depending on whether the major velocity vectors are parallel to one
of the coordinate directions or are diagonally oriented. The effect is more
pronounced for conditions of little dispersion or piston-like displacement of
the solute, and for conditions of the viscosity of the displacing fluid much
less than the viscosity of the displaced fluid. The effect virtually is
absent if the two viscosities are nearly equal, or if the dispersion
coefficient is large. The primary cause of the grid-orientation effect
appears to be the use of a seven-point difference formula for the three-
dimensional-flow and solute-transport equations, because this formula
restricts transport in the diagonmal directions. Use of a grid where the major
velocity vectors are oriented parallel to one of the céordinate directions,
has been found to give more realistic simulation results (Aziz and Settari,
1979, p. 336). To completely eliminate this problem, a higher-order
differencing scheme, or curvilinear coordinates need to be used, but these

modifications are beyond the scope of the present version of HST3D.

There is a limitation on which boundary conditions can be used with a
tilted coordinate system. The free surface and leakage boundary conditions

require that the z-axis be oriented in the vertical direction.




A limitation that is secondary for most ground-water flow and transport
modeling is that two types of tramsport phenomena exist that this type of
numerical simulation has difficulty in representing quantitatively. The first
phenomenon, viscous-fingering instabilities, may occur during the displacement
of a resident fluid by an injected fluid with significantly less viscosity.
The injected fluid forms channels or fingers through the resident fluid, as
described by Aronofsky (1952), Saffman and Taylor (1958), and Sheidegger
(1960). The second phenomenon may occur in the situation where a fluid of
greater density overlies one of lesser density. Rayleigh-Taylor convective
cells are formed that mix the two fluids (Wooding, 1959). Numerical
simulation tends to predict these transport instabilities later than they
occur in laboratory-scale experiments. When perturbations are present to
initiate the instabilities, the general magnitudes often are calculated to be
less than those that actually occur (Scheidegger and Johnson, 1963; and
Dougherty, 1963). However, laboratory-scale viscous fingering and convective-
cell formation may be much more unstable than the corresponding field-scale
phenomenon, because of the smaller dispersivity at the laboratory scale.
Therefore, at the field scale, numerical simulation may not be so much in
error in representing these instabilities. Nevertheless, these limitations
need to be be kept in mind when simulating fluid flow with large viscosity or

density contrasts.

Another secondary limitation is that this is a rather general computer
code. The variety of discretization, boundary-condition, and source-sink
options make this code not as computationally efficient as a simulation code
designed specifically for a given system being investigated. This limitation
is compensated by the ability of the HST3D simulator to represent a wide

variety of physical situatioms.

1.3. PURPOSE AND SCOPE

The purpose of this documentation is to provide the user with information
on the theory, assumptions, and equations being numerically solved, the

numerical-solution methods employed, and the various program options avail-



able. The sets of verification test problems are presented and two example
problems are described in detail with input and output files. Sections on the
code organization, input information, and output information, as well as a
list of variable-definitions and a cross-reference map are provided. The
documentation is intended to be sufficiently complete and understandable so
the user easily can obtain successful simulations, diagnose most computational
problems, develop remedies, and incorporate minor program additions or

modifications to suit specific modeling needs.

Each release of the HST3D program code is identified by a release number.
This documentation is for release 1.0, and this number will change as modifi-
cations, corrections, and additions are made to the program. Updates to the

documentation will be keyed to the release number.
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2. THEORY

2.1. FLOW AND TRANSPORT EQUATIONS

Derivation of the saturated ground-water flow and heat- and solute-
transport equations solved by this program can be found in references such as
Bear (1972) or Huyakorn and Pinder (1983). Only the assumptions leading to
these equations will be presented here. Explanations of the notation will
appear after the first usage. A complete table of notation appears in
chapter 9. In the report, all variables will be given with metric (SI) units

of measure.

2.1.1. Ground-Water Flow Equation

The partial-differential equation of ground-water flow is based on the

following assumptions:

[ ]

Ground water fully saturates the porous medium within the region of
ground-water flow.

® Ground-water flow is described by Darcy's Law.

® The porous medium is compressible.

® The fluid is compressible.

® The porosity and permeability are functions of space.

® The coordinate system is chosen to be alined with the principal
directions of the permeability tensor so that this tensor is
diagonal for anisotropic media.

® The coordinate system is orthogonal as are the principal directions of
the permeability tensor.

® The coordinate system is right-handed with the z-axis pointing
vertically upward. '

® The fluid viscosity is a function of space and time through dependence
on temperature and solute concentration.

® Density-gradient diffusive fluxes of the bulk fluid are neglected

relative to advective-mass fluxes.
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® Dispersive-mass fluxes of the bulk fluid from spatial-velocity

fluctuations are not included.

® Contributions to the total fluid-mass balance from pure-solute-

mass sources within the region are not included.

Pressure is chosen as the dependent variable for fluid flow, because no
potentiometric-head function exists for density fields that depend on
temperature and solute concentration. All pressures denoted by p are
expressed relative to atmospheric pressure. Absolute pressures are denoted by
p. The flow equation is based on the conservation of total fluid mass in a
volume element, coupled with Darcy's Law for flow through a porous medium.
Thus:

k
8&9) =V -p “ﬁ_(v" + pg) + qp* ; (2.1.1.1a)

where

is the fluid pressure (Pa);

is the time (s);
is the effective porosity (-);
is the fluid density (kg/m3);

T M e

is the density of a fluid source (kg/m3);

he)
B3

is the porous-medium permeability tensor (m2?);
is the fluid viscosity (kg/m-s);

is the gravitational constant (m/s2?); and

e T

is the fluid-source flow-rate intensity (m3/m3-s); (positive

is into the region).

Equation 2.1.1.1a relates the rate of change of total mass in the fluid
phase to net fluid-inflow rate, and source fluid-and-solute flow rate. Note

that the density of the fluid source is p* for g>0, and p for q<0.
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The interstitial or pore velocity, v is obtained from Darcy's Law as:

(Vp + pg) ; (2.1.1.1b)

1<

1}

!
ml [
T

where

v is the interstitial-velocity vector (m/s).

2.1.2. Heat-Transport Equation

The thermal-energy-balance equation, used for heat transport, is based on

the following assumptions:

Fluid kinetic energy is negligible.

® Thermal-dispersive transport takes place with a mechanism analogous to
solute-dispersive transport.

® Thermal conduction occurs through the fluid and porous medium in
parallel.

® Radiant-energy transfer is neglected.

® Thermal effects of chemical reactions are neglected.

® Changes in gravitational energy from diffusive and dispersive fluxes
of solute species are neglected.

® Heating from viscous dissipation is neglected.

® Heat capacities are not a function of temperature or solute
concentration.

® Thermal conductivities are not functions of temperature or solute
concentration.

® Thermal equilibrium exists between the fluid and solid phases.

® Energy transport by a diffusive flux of solute is neglected.

® Only a single fluid phase exists.

® Pressure equilibrium exists between the fluid and porous-medium
phases.

® Changes in fluid enthalpy with pressure, that is, pressure volume work,

reversible work, or flow work, as a parcel of fluid moves are

neglected.

13



® The velocity of the porous medium during compression or expansion is

neglected.

® Enthalpy dependence on solute concentration is accounted for by a

heat-capacity adjustment.

® The thermal expansion of the porous medium is neglected.

The energy equation is based upon the conservation of enthalpy in both
the fluid and solid or porous-medium phases of a volume

Enthalpy is a derived property containing both internal

energy. Temperature

9
ot

where

ET

n o
w

is the heat

(J/kg-°C);
c¢_is the heat
(J/kg-°C);

h

is the dependent variable. Thus:

(apcf + (1-s)pscs)T = V-(sKf + (l-s)KS); vT

+ VeeD, VT - V~apcng

+ qH

is the fluid and porous-medium temperature (°C);
is the temperature of the fluid source (°C);

is the density of the solid phase (kg/m3);

capacity of the fluid phase at constant pressure

capacity of the solid phase at constant pressure

K, is the thermal conductivity of the fluid phase (W/m-°C);

is the thermal conductivity of the solid phase (W/m-°C);

K
s
QH is the thermo-mechanical dispersion tensor (W/m-°C);

Equation 2.1.2.1 relates the rate of change of fluid and porous-medium

enthalpy to the net conductive-enthalpy flux, to the net dispersive enthalpy

is the heat-source rate intensity (W/m3); and

1 is the identity matrix of rank 3 (-).

14
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+ qp*ch* ; (2.1.2.1)




flux, to the net advective-enthalpy flux, to the heat source, and to the fluid
source at a given temperature. It is written for a unit volume of fluid and
solid phase together; that is, a unit volume of saturated, porous medium.

Heat is injected at temperature, T*, and density, p*, by a fluid source; but
heat is withdrawn at temperature, T, and density, p by a fluid sink. A

detailed derivation of equation 2.1.2.1 is given in Faust and Mercer (1977).

2.1.3. Solute~-Transport Equation

The equation for conservation of a single solute species is based on the

following assumptions:

® Thermal diffusion is neglected.

® Pressure diffusion is neglected.

® Solute transport by local, interstitial, velocity-field fluctuations
and mixing at pore junctions is described by a hydrodynamic-

dispersion coefficient.

[ ]

Forced diffusion by gravitational, electrical, and other fields is

neglected.

The only reaction mechanism is linear decay or disappearance of solute.

[ ]

The only solute, porous-medium, interaction mechanism is linear-
equilibrium sorption.

® No pure solute sources occur in the fluid or solid phases.

The solute mass fraction is taken to be the dependent variable because
the density field is variable. It is an amount per unit mass of fluid, that
is, a mass-based concentration. The more widely used concentration term is an
amount per unit volume of fluid; that is, a volume-based concentration. But
volume-based concentration is not conserved in a variable-density system. The
term "solute concentration," used in this report, will refer to the mass-based
concentration or mass fraction. The conservation equation for the solute in

the fluid phase can be written:
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QL%%E) = V+gpDVw + VegpD IVw - V-epvw - Aepw

-prfs + gpiwr (2.1.3.1a)

where

w is the mass fraction of solute in the fluid phase (-);

w* is the mass fraction of solute in the fluid source (-);

QS is the mechanical-dispersion-coefficient tensor (m2/s);

D is the effective-molecular diffusivity of the solute (m?/s);
A is the linear-decay rate constant (s71);

R, is the transfer rate of solute from fluid to solid phase per

unit mass of solid phase (kg solute/s*kg solid phase); and

p,, is the bulk density of the porous medium (kg/m3).

A similar conservation equation can be written for the solute in the

solid phase:

d(p, w)
b7 _ _ _
3¢ prfS Apbw , (2.1.3.1b)

where

w is the mass fraction of solute on the solid phase (-).

The solute is immobile when it is on the solid phase. Under the
assumption of linear-equilibrium sorption, the fluid-phase and solid-phase

concentrations can be related by an equilibrium-distribution coefficient:
W= dew ; (2.1.3.1¢c)

where

Kd is the equilibrium-distribution coefficient (m3/kg).

By combining equations 2.1.3.la-c, we obtain the final solute-

conservation equation:
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9
5t (8 + p Kj)pw = Veep[Dy + D L1Vw-Veepyw - A(e+p K,)pw

+qpFwr (2.1.3.2)

Equation 2.1.3.2 relates the rate-of-change of solute in the fluid phase
to the net dispersive and diffusive flux, the net advective flux, the solute-
source rate, the solute-injection rate with a fluid source, and the solute-
decay rate. The equation is written for a unit volume of fluid and solid
phase together; that is, a unit volume of saturated porous medium. Note that
solute is injected into the sytem at concentration, w*, and density, p*, by a
fluid source; but that solute is withdrawn at concentration w, and density p,

by a fluid sink; that is, w* = w, if q<0.

2.2. PROPERTY FUNCTIONS AND TRANSPORT COEFFICIENTS

Before the three conservation equations can be solved, information about
the fluid properties, porous-matrix properties, and transport coefficients
need to be obtained. The fluid properties are density, viscosity, heat
capacity, thermal conductivity, and reference-state enthalpy. The porous-
matrix properties are porosity, compressibility, permeability, heat capacity,
thermal conductivity, and reference-state enthalpy. The transport
coefficients are heat- and solute-dispersion tensors, and the effective
molecular diffusivity, decay and sorption coefficients of the solute. 1In the
HST3D simulator, density, viscosity, and porosity are functions of the
dependent variables: pressure, temperature, and solute-mass fraction. The
heat- and solute-dispersion tensors are functions of space and the inter-
stitial velocity. The other parameters are either uniform or functions of

space within the simulation region.
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2.2.1. Fluid-Density Function

Fluid density is assumed to be a function of pressure, temperature, and
solute concentration. For fluids such as water, a3 linear-density function is
usually adequate over the ranges of pressures, temperatures, and solute
concentrations encountered. Thus, the fluid-density function incorporated

into this simulation code is:

_ 9p - 3p -
p(p,T,w) = p(Po’To’wo) * dp o(p Po) ¥ oT o(T To)

9p w )
+ S o(w wo) ; (2.2.1.1a)
or
p(p,T,w) = p_ + pOBp(p-po) = P By (T-T ) + p B (w-w ) ; (2.2.1.1b)
where
po is the fluid density at a reference pressure, po, temperature, To’

and mass fraction, w , (kg/m3);
B_ is the fluid compressibility (Pa~1);
By is the fluid coefficient of thermal expansion (°c™1); and
is the slope of the fluid density as a function of mass fraction

divided by the reference fluid density (-).

Now pon is given by:

p s - (2.2.1.1C)

18




where
wmin is the minimum solute-mass fraction (-); and
w is the maximum solute-mass fraction (-).

max
The user needs to specify Woin and Viax along with p(wmin) and p(wmax)° The
minimum solute-mass fraction usually will be determined by the initial
conditions. If linear decay is present, Woin must be zero. The maximum
solute-mass fraction usually will be determined by source or boundary
conditions because none of the transport processes incorporated in the HST3D
simulator will concentrate solute in the fluid phase. For simplicity, wp is

taken to be equal to w_,
min

The option is available in HST3D to use a scaled, solute, mass fraction
defined by:

v wmin
w' = v ow ) (2.2.1.2)
max min
where

w' is the scaled solute-mass fraction (-);

The scaled solute-mass fraction also is dimensionless and ranges from 0 to 1.

Commonly, for input and output of mass-fraction data, it is more convenient to

deal with a scaled solute-mass fraction rather than an absolute value. With a

scaled solute-mass fraction, equation 2.2.1.1b becomes:

'y = - - - "'
p(p,T,w') = Py * pon(p po) pOBT(T To) + pon w', (2.2.1.3a3)
where

pOBw' = p(wmax) - p(wmin) . (2.2.1.3b)

The errors caused by assuming constant values for fluid compressibility,
coefficient of thermal expansion, and variation of density with solute con-
centration can be assessed by looking at a density table for salt brines

(Perry and others, 1963, p. 3-77).
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Over a temperature range of about 100 °C and a solute-mass fraction range of
20 percent, the coefficient of thermal expansion varies by 60 percent and the
density-concentration coefficient, Bw, varies by about 10 percent (Perry and
others, 1963, p. 3-77). The variation of the fluid compressibility could
not be checked because of lack of data. However, the density dependence on
pressure for nearly incompressible fluids like water is much less than the
density dependence on temperature or solute concentration. Therefore, some
error will be introduced into the simulations by the linear-density function

where large variations in temperature and solute concentration are involved.

The relative importance of pressure, temperature, and solute con-
centration for density variation can be seen from the salt-brine density table
given in Perry and others (1963) and the compressibility of water. A change
in pressure of 10® Pa results in a density change of about 0.04 percent,
whereas a change in temperature of 100 °C results in a density change of about
4 percent, but a change in solute-mass fraction of 0.25 results a density
change of about 20 percent. Thus, the salt concentration has the greatest

effect on the density for typical ranges of the variables.

2.2.2. Fluid-Viscosity Function

Fluid viscosity is strongly dependent on temperature, and, to a lesser
extent, on solute concentration. The viscosity dependence on pressure is
neglected. The viscosity as a function of temperature and scaled-solute

concentration is written as:

3
M(T,w") =10 p (Tov,w') exp [(Bow' + Bi(1-w")) (% - %ovi] , (2.2.2.1)

where
p(Tov,w') is the fluid viscosity at the reference temperature (kg/m-s);
Bo, B1 are parameters describing the temperature dependence of
viscosity at the concentration extremes (°C); and

Tov is the reference temperature for viscosity (°C).
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The scaled solute-mass fraction of equation 2.2.1.2 is used in the
viscosity function as well as the density function. The parameters By and By
are obtained from a least-squares fit of viscosity versus temperature data.
If data are available only at a single temperature, the generalized viscosity
versus temperature graph of Lewis and Squire as given in Perry and others
(1963, p. 3-228) is used.

The concentration extremes are chosen to be the same minimum and maximum
mass fractions described in section 2.2.1. The variation of viscosity with
solute-mass fraction is specified in tabular form by the user. If viscosity
data at only the minimum and maximum mass-fraction values are available, the
equation used for viscosity as a function of concentration at a given

temperature is:

»

pw’) = ul(Tov)w uo(Tov)l‘w , (2.2.2.2)

where
Ho is the viscosity at the minimum-mass fraction or scaled
concentration of zero (kg/m-s); and
M1 is the viscosity of the maximum-mass fraction or scaled

concentration of one (kg/m-s).

Equation 2.2.2.2 is used with equation 2.2.2.1 or alone in the case of iso-

thermal simulation.

The viscosity versus temperature and concentration data that could be
available may be divided into three classes. Class 1 is the greatest amount
available, namely p(T) at Voin and Voax and p(w) fpr a range of w fromw_. to

min

Woax” Class 2 is viscosity versus temperature, H(T), at only Voin and Voax
Class 3 is the least amount of data required, namely two viscosity points at

a given temperature at w ., and w .
min max

An evaluation of the accuracy of viscosity functions given in equations

2.2.2.1 and 2.2.2.2 was presented by INTERCOMP Resource Development and
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Engineering, Inc. (1976). They found errors ranging from 5 to 14 percent over
the temperature range from freezing to boiling for pure water. For a solution
of sodium chloride with a mass fraction ranging from 0.0 to 0.24, the
different amounts of data available resulted in errors from 5 to 18 percent at
a temperature of 65 °C. A sucrose solution with mass fractions ranging from
0.0 to 0.5 showed a maximum viscosity error of 30 percent. Other viscosity
functions of temperature and solute concentration may be more suitable for

certain situations.

2.2.3. Fluid Enthalpy

Fluid-phase enthalpy is a function of pressure, temperature, and solute
concentration. The present version of the HST3D code uses the enthalpy of
pure water obtained from the steam tables of Keenan and others (1969, p. 2-7
and 104-107), which can be described as:

~ A ﬁ 1 A T
H(,T) = H(B,,,0) + fﬁsat 5 [l-TﬁT]dp + J, cgodT; (2.2.3.1a)
where
H is the specific enthalpy of the fluid phase (J/kg);
p is the absolute pressure (Pa);
ﬁsat is the absolute pressure at saturation (Pa); and

T is the absolute temperature (K).
is the heat capacity of pure water at constant pressure (J/kg-°C).

The reference state for the enthalpy tables is saturated liquid water at
0 °C where the reference enthalpy is taken to be zero (Van Wylen, 1959,
p. 80). The variation of enthalpy with solute concentration is treated in an
approximate fashion, by adjusting the pure-water enthalpy by a factor that is
the ratio of the heat capacity of the solution to the heat capacity of pure
water at 0 °C, and by using an average heat capacity for the range of solute
concentrations to be simulated. The heat capacity is assumed independent of

temperature and pressure.
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Thus,

H(p,T,w) = H(p,T,0) (cg(w)/cg ) (2.2.3.1b)
where
cf(w) is an average heat capacity (J/kg-°C).

During the simulations, the enthalpy is calculated as a variation from a
reference state described by a pressure, Pone and a temperature, ToH’
selected by the user. The reference state is pure water so the reference

mass fraction, LR is always zero. Thus, the enthalpy equation becomes:

[ - d T —
H(p,T,w) = H(P y» T ;s0) (cg/ce ) + f§ [1-TB] 59 + ITO cdT 3 (2.2.3.1c)

oH H

where
PoH is a reference pressure for enthalpy (Pa);

P is the corresponding absolute pressure (Pa); and

TOH is a reference temperature for enthalpy (°C).

The TBT term may be neglected for temperatures less than 100 °C (373 KX)
and density may be regarded as constant for pressure changes less than 10% Pa.
The chosen reference pressure and temperature needs to be within the range to
be calculated during the simulation. The heat capacity of the fluid needs to
be an average value over the solute-concentration range to be simulated. More
sophisticated treatments of the enthalpy of fluid mixtures are available in

the literature; for example, Hougen and others (1959, p. 879).
2.2.4. Porous-Medium Enthalpy

Enthalpy of the porous medium is taken to be a function of only temper-

ature in the following form:
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Hs = HS(TOH) + cs(T-ToH) ; (2.2.4.1)

where
HS is the specific enthalpy of the solid phase (porous matrix) (J/kg);
and '

Cg is the heat capacity of the solid phase (porous matrix) (J/kg-°C).

Often, the enthalpy of the porous matrix is taken to be zero at a

reference state of 0 °C.

2.2.5. Porous~Medium Compressibility

Many types of compressibility for porous media have been defined (Bear,
1972, p. 52, 203-213; Thomas, 1982, p. 34, 40). The porous-medium bulk
compressibility, oy (Pa~1), is defined on a volumetric basis (Bear, 1972,

p. 56; Eagleson, 1970, p. 268), assuming confined-aquifer conditions, and
one-dimensional, vertical consolidation of the porous matrix, as:
1 8Vb
o = ; (2.2.5.1)

b Vbap

where
Vb is the bulk or total volume of a fixed mass of porous medium,
that is, fluid plus porous matrix (m3).

Petroleum-reservoir engineers use the term rock compressibility, o

(Pa"1), defined as (Thomas, 1982, p. 34):

(2.2.5.2)

=3

]
M |
GDIQ?
oim
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Rock compressibility directly expresses the variation of porosity with

pressure. It is related to bulk compressibility by:

o = 48 . (2.2.5.3a)

for the case of a nondeforming control volume, where more porous medium enters

the control volume, as compression takes place. It is related by:
a = — (2.2.5.3b)

for the case of a deforming control volume, or where impermeable medium enters

a nondeforming control volume, as compression takes place.

By combining equations 2.2.5.2 and 2.2.5.3b we obtain:

gﬁ =a (2.2.5.4)
Py

which relates bulk compressibility to changes in porosity with changes in

pressure.

Thus we have allowed the control volume to deform as the porous matrix
and the fluid specific volumes expand or contract with changes in pressure.
However, we neglect the velocity of deformation, so that the interstitial-pore

velocity is calculated with respect to the fixed-coordinate system.

The specific storage is related to the compressibilities of the fluid and

porous medium by (Eagleson, 1970, P. 270):
So = pg(ab + eﬁp) (2.2.5.5)

where

So is the specific storage (m-l).
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However, it is more convenient for our purposes to employ the com-

pressibility parameters, because of the variable density.

2.2.6. Dispersion Coefficients

2.2.6.1. Solute Dispersion

Hydrodynamic dispersion is the name for the group of mixing mechanisms
that occur on the micro or pore scale that cause the irreversible spreading of
a solute tracer that is observed at the macro or field scale for the system.
As described by Bear (1972, p. 580-581), flow within the porous-medium
structure has variations in local flow velocity, because of the velocity
profile across the pore and mixing at pore junctions. The macroscopic effect
is mechanical dispersion of a tracer. Molecular diffusion also is present
where solute-tracer concentration gradients exist. However, diffusion in
liquids is a relatively slow process, producing significant transport rates
only at very slow ground-water flow velocities. In a laminar flow regime
within the pores, diffusion of solute from one flow path to another
contributes to the dispersion, so the separation of dispersion into a
mechanical and diffusive mechanisms is somewhat artificial. For an extensive
discussion of dispersion theory and a review of previous work, see Bear (1972,
ch. 10).

%
The form of the hydrodynamic-dispersion-coefficient tensor DSij (m2/s)

for the heat- and solute-transport simulation model is assumed to be, in

component form:

D.*¥, =D,.. +D 5., ; (2.2.6.1.1)

where
DSij is the mechanical-dispersion-tensor component (m?/s);
Dm is the effective molecular-diffusion coefficient (m?/s); and
aij is the Kronecker delta function.
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The effective molecular-diffusion coefficient is the liquid-phase
molecular diffusivity multiplied by an attenuation factor that accounts for
the effect of the tortuosity of the porous medium. The form of the
mechanical-dispersion coefficient is taken from the work of Scheidegger (1961)
and Bear (1961) as presented by Konikow and Grove (1977) and Bear (1972,
ch. 10). For an isotropic porous medium, two parameters describe the
mechanical-dispersion tensor, the longitudinal dispersivity, o (m), and the
transverse dispersivity, o (m). Then the nine components of the mechanical-
dispersion tensor are given by:

\AAL

= - 1] .
DSij (aL uT) - + o vbij ; (2.2.6.1.2)

where
v, is the component of interstitial velocity in the ith direction
(m/s);
2 2 2 %
and v=(v +v +v) ; (2.2.6.1.3)
1 2 3
where

v is the magnitude of the velocity vector (m/s).

In general, the subscript 1 is associated with the x direction; the
subscript 2 is associated with the y direction; and the subscript 3 is
associated with the z direction. Field data have shown that longitudinal
dispersivity usually is 3 to 10 times larger than transverse dispersivity
(Freeze and Cherry, 1979, p. 396; Anderson, 1979), and that their magnitudes
are dependent on the scale of observation distance over which the tracer is

transported in the system.
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Note that while flow in the porous medium may be governed by an
anisotropic-permeability temsor, dispersion for heat and solute transport is
assumed to be described by a dispersion tensor that applies to an isotropic-
porous medium. This assumption is made because it is not feasible to obtain
all the dispersivity parameters for an anisotropic medium. If dispersive
transport is a second-order effect, relative to advective transport, this
inconsistency should not introduce serious errors. In most cases, the errors
should be less than those introduced by uncertainties in the dispersion

parameters themselves.

When the longitudinal and transverse dispersivities are not equal,
dispersive transport will cause a solute distribution to enlongate in the
direction of flow, because the longitudinal dispersivity always is greater
than or equal to the transverse dispersivity. Thus, anisotropic spreading of
solute and heat can occur in an isotropic-porous medium, even under conditions

of uniform, unidirectional flow.

2.2.6.2. Thermal Dispersion

A description of thermal dispersion is based on a direct analogy with
solute dispersion. Energy replaces solute mass as the quantity being tran-
sported by mechanical dispersion, and thermal conduction replaces molecular
diffusion. Thus, the thermo-mechanical dispersion tensor is derived from the

mechanical dispersion tensor by:

Dyi: = PeeDg. . (2.2.6.2.1)

Hij Sij
where
DHij is the thermo-mechanical-dispersion tensor component (W/m-°C).
Combining the thermo-mechanical dispersion tensor with the net thermal
conductivity of the fluid and solid phases gives the thermo-hydrodynamic-

*
dispersion coefficient tensor, DHij (W/m-°C), in component form:
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* = -
DHij DHij + [EKf + (1 s)KS]Gij (2.2.6.2.2)

2.3. EXPANDED SYSTEM EQUATIONS

When the density function, equation 2.2.1.1b, and the porous-medium
compressibility relation, equations 2.2.5.3a and 2.2.5.3b are incorporated
into the system governing equations, the following expanded system equations

are obtained:
For ground-water flow:

op o1 ou
&Py 5t T EPBrar t PR, 5t

-a—R - . g * .
*PY% St Vep 5 (Wp 4 pg) +qpF ; (2.3.1a)
For heat transport:
o aT
eponch 5t + &P Bre T 3¢

B o
tep BoeT 5 P o 5¢

oT  _ ap - oT
£ 3t PeSsT 4 3¢ * (1-8dpoy B¢

+ gpc
= V-(aKf + (l-e)KS); VT
+ V°8QH VT - V~$pcng

+ + qp*ch* ; (2.3.1b)

Wy
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For solute transport:

op oT
PoBo(EPpK) W 5 *+ P, Brletp Ky w 5E

d
+ pOBw(s+pbKd) w 5%

ap LA - v-
tpogw et p(e+pbKd) 5t = v sp[_D_s + Dm;]Vw V-epvw

- A(e+pbKd) pw + gpFw¥ . (2.3.1c)

The change in the product of bulk density and equilibrium-distribution
coefficient, pbKd’ with pressure is zero, because these equations were derived
for a fixed mass of porous medium occupying a volume that under-goes slight
deformation with variations in pressure. These three expanded equations show

the implicit coupling that occurs with variable density and porosity.

2.4. SOURCE OR SINK TERMS--THE WELL MODEL

Most of the ground-water flow and heat and solute sources or sinks affect
the simulations through the boundary conditions. However, a line source or
sink term is used to represent injection or withdrawal by a well. Although a
well is treated as a line source or sink for the flow and transport equations,

a well is a finite-radius cylinder for the well-bore model.

The well model for the HST3D simulator is more sophisticated than those
well models used in most ground-water flow simulators. A well can be used for
fluid injection or fluid withdrawal, with associated heat and solute injection
or production. It also can be used simply for observation of aquifer
conditions. In the present code, the well bore can communicate with any
subset of cells along the z-coordinate direction at a given x-y location.

That is, the well may be screened or it may be an open hole over several

intervals of its depth. Several options are available for specifying pressure
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or flow-rate conditions under which the well will operate. A special
technique is used to relate the local pressure field around a well to the
pressures in the cells with which it communicates. Finally, a mathematical
model of the well riser is included to calculate pressure and heat gains and
losses as fluid moves from the land surface to the uppermost screened

interval, or vice versa.

The well can be divided into two parts as shown in figure 2.1. The lower
part, from the bottom of the borehole to the top of the uppermost screened
interval, will be referred to as the well bore; the upper part, from the top
of the screened interval to the land surface, will be referred to as the well
riser. The well-riser interval may or may not have a riser pipe within it,
and the well-bore interval may be an open hole or have cased and screened
sections. A screened section also may be just perforated casing. The term
well-datum level refers to the location at the junction between the well riser

and the well bore, equivalently referred to as the bottom hole.

Focusing attention on the well bore, we shall describe the linking of the
well model to the simulation region as a source or sink, and then describe the
pressure and flow-rate conditions that can be specified as bottom-hole
conditions. The incorporation of the well-riser calculations will then be

discussed.

Cell or nodal pressures represent a spatially averaged condition, when
the simulation region is discretized into finite-difference cells. A well
located in a cell will have a pressure at the screen at the nodal elevation
that is not necessarily the same as the cell pressure. Various analytical
approaches have been used to avoid the computational burden of a finer
finite-difference grid around each well in the region. They are summarized by
Aziz and Settari (1979, sec. 7.7) and are based on steady-state radial flow in
a cylindrical-coordinate system with homogeneous aquifer properties. Another

review may be found in Williamson and Chappelear (1981).
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Figure 2.1.--Sketch of well-model geometry showing the well-bore

and well-riser sections and the well-datum level.

2.4.1. The Well-Bore Model

For three-dimensional cartesian coordinates, the present version of the
HST3D code uses a modification of the well-bore equation derived by Van Poolen
and others (1968). Consider steady-state radial flow from a well into a
homogeneous aquifer with flux across an exterior cylindrical boundary, rg-
This boundary can be regarded as a radius of influence of the well. For a

cartesian-coordinate system, the exterior radius, ro is taken to be the
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radius of a circle that encloses the equivalent area to the x-y horizontal
area of the cell in which the well is located. The average pressure within
the annulus between the well-bore radius and the radius of influence can be
calculated and the flow rate from the well per unit length of well bore can be
expressed as a function of the pressure change from the well-bore pressure to

this average pressure. At any given elevation, z, we have:

2n k. (r?2 - r2) (p. - p.)
q, = v e W W av ; (2.4.1.1)
M [rz 1n (re/rw) - 0.5 (rz - ré)]

where
P, is the pressure at the well bore (Pa);

k is the average permeability between r, and r, (m?);

w

Py is the average pressure between r, and r, (Pa);
r, is the well-bore radius (m);
r, is the radius of influence of the well (m); and

q, is the volumetric flow rate per unit length of well bore

(positive is flow into the aquifer) (m3/m-s).

The time-independent factors that affect flow from a well bore can be
combined into a single term. Departing slightly from petroleum-reservoir-

engineering usage, we define a modified well index as follows:

2n kw (rg - rg)
W, = " " ; (2.4.1.2)
- 2 _
ro 1n (re/rw) 0.5 (re rw)

where

Wy is the well index per unit length of well bore (m2?).
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The average permeability kw is taken to be:
ko= (kk)?; (2.4.1.3)
v ) 3 4.1,

for cartesian-coordinate systems, where

kx is the permeability in the x-direction (m2?); and

kY is the permeability in the y-direction (m2).

There is presently no provision for accommodating areally heterogeneous

permeability distributions in the vicinity of the well bore.

Equations 2.4.1.1 to 2.4.1.3 will be modified for use with the finite-

difference discretization in the numerical-implementation section 3.3.

For three-dimensional and cylindrical regions, the total specified flow
rate from the well needs to be allocated over the length of well bore that
communicates with the aquifer. This allocation can be done in two ways; by
fluid mobility, or by the product of fluid mobility and the pressure
difference between the aquifer and the well bore. Although there may be zZones
of cased well bore through which there is no communication with the aquifer,
we shall assume for the present discussion that the well bore is screened
throughout its depth. The total well flow rate from the well to the aquifer

is given by:

2U
Q, = I qwdz ; (2.4.1.4a)
2L
By W ®
= J'z -—p—(-ﬁ (pw - pav)d,Q 5 (2.4.1.4b)
L
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where
Q. is the volumetric well flow rate (positive is from the well
to the aquifer) (m3/s);
2 is the distance along the well bore (m);
£L is the lower end of the screened interval (m); and

2U is the upper end of the screened interval (m).

Fluid mobility at the well can be defined as:

(2.4.1.5)

where

Mw is the well mobility per unit length of well bore (m3/s-m-Pa).

Allocation of the specified flow rate by fluid mobility is obtained by
assuming that the pressure difference in equation 2.4.1.4b is independent of
depth. Then

q,(2) = nw(z)/// 12“ M (2) d2 ; (2.4.1.6)
2
L

represents the allocation of the total flow rate over the well-bore length as

a function of fluid mobility.

For wells drilled at an angle, ew, to the vertical or z-axis,

dz = cos 8 d2 ; (2.4.1.7)
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where

Ow is the angle between the vertical and the well bore (degrees).

If the screened interval is not continuous from 2L to 2U’ the mobility is set

to zero over the appropriate subintervals.

The alternative method of flow-rate allocation over the well-bore length
is derived by not regarding the pressure difference in equation 2.4.1.4b as
constant with depth. A hydrostatic-pressure distribution in the well bore is
assumed using an average fluid density. Thus, frictional hydraulic-head

losses in the well bore are neglected. This yields, from equation 2.4.1.4b.

2y

IEL M (2) [p, (2) + p g(z-z ,)]de + Q_

Pyud = ) ; (2.4.1.8)
U

IEL Mw(ﬂ)dﬂ

where
P.d is the bottom-hole or well-datum pressure (Pa);

Z .4 is the elevation of the well datum (m); and

p. is the average fluid density in the well bore (kg/m3).

Then the well flow rate is allocated as follows:

@ =M@ I[p ,+pglz . -2)-p._1; (2.4.1.9)
qw W wd W wd av

This method is referred to as allocation by mobility and pressure
difference. The average pressure, Py » will be related to the grid-cell

pressures in section 3.3.1 on numerical implementation.
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The flow rate can be specified with a bottom-hole pressure-constraint
condition, that may affect the source or sink flow rate applied. Allocation
is by mobility and pressure difference, and equation 2.4.1.8 is used to
calculate a predicted bottom-hole pressure based on the specified flow-rate.
For an injection well, if the predicted pressure is greater than the bottom-
hole constraint pressure, then the well is pressure-limited, and the flow rate
will be less than that specified. The flow rate will be reduced to meet the
pressure constraint. If the predicted bottom-hole pressure is less than that
specified, then the desired flow rate is used. For a production well, if the
predicted bottom-hole pressure is less than the constraint pressure, the well
is pressure limited, and the flow rate will be less than desired. Otherwise,
the pressure constraint is not limiting. In other words, a well bore can
function as either a Dirchlet or a Neumann boundary condition, or it can

switch back and forth.

When bottom-hole (well-datum) pressure is specified, equation 2.4.1.9
gives the flow-rate allocation and equation 2.4.1.4b gives the total flow

rate. No constraints are applied to the calculated flow rate.

After the flow rate has been established and allocated, heat-injection
and solute-injection rates are determined from the bottom-hole pressure,
specified-temperature, and specified solute-mass-fraction values. Heat-
withdrawal and solute-withdrawal rates are determined by the ambient pressure,
temperature, and solute-mass fraction in the aquifer for each cell that

communicates with a well bore.

In the case of cylindrical coordinates with a single well at the radial
origin, the inner radius of the simulation region becomes the well-bore
surface. Thus, a specified flow rate allocated by mobility becomes a
specified-flux boundary condition. Allocation by mobility and pressure
difference using equation 2.4.1.9 is not applicable here, because the
well-bore pressure and the pressure at the inner radius of the region are
identical. Instead, the pressure profile along the well bore is not assumed
to be hydrostatic, but, rather it satisfies a steady-state momentum equation,
that includes frictional pressure losses, but neglects changes in momentum by
flow into or out from the well bore. Then, we have, for a differential-

momentum balance along the well bore:
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dpw pwvzw
3= ‘P8t Arw fw = 0; (2.4.1.10)

where

fw is the hydraulic-head-loss friction factor (~); and

v is the average velocity across the well bore at a given z-level

(m/s).

The corresponding mass balance is obtained assuming no change in well-

bore storage, thus:

+ =0 ; (2.4.1.11)

where

qp,, is the volumetric flux from the well bore (m3/m2-5).

Equations 2.4.1.10 and 2.4.1.11 can be combined to give:

d 2rw2 dp
PyIrw = az v =t Pg)| s (2.4.1.12)

Equation 2.4.1.12 is combined with the flow equation 2.1.1.1a by assuming
that the aquifer pressure and well-bore pressure are equal at the well-bore

radius. The flow equation at the inner radius of the region becomes:
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2r 2

%ep _ g .,k 9 w ap .
St Vepo(Vptes) + oo e (e +pwg), (2.4.1.13)

for the parts of the inner radius that are screened. A fluid-flux boundary

condition of zero applies over the cased-off intervals.

Thus, the flow equation is still in its original form, but the co-
efficients of pressure gradient in the z-direction, and of the gravity term,
are augmented. The flow rate to or from the well is implicitly incorporated.
When the equation is converted to discrete form, the flow rate to or from the
well will arise naturally at the upper boundary of the screened interval. The
friction-head-loss factor is calculated as described in the well-riser model,
section 2.4.2. The magnitude of the friction head-loss factor often may be

very small but it needs to be non-zero, for flow to occur in the well bore.

The total flow rate to or from the well always is satisfied by this
calculation method, and the pressure at the top of the screened interval in
the aquifer is identical to the well-datum-level pressure. Recall that these
pressures are not necessarily equal in the line-source approach used with the
cartesian coordinate system. An examination of the relative magnitudes of the
terms for advective momentum and frictional head-loss in the full momentum-
balance equation shows that, for a producing well with uniform inflow per unit
length, the advective-momentum term dominates near the bottom of the screen.
The frictional head-loss term dominates at distances above the bottom of the
screen that are greater than about 1,000 times the well radius. Thus, a
significant region exists in which both the momentum and frictional terms are
of similar magnitude. However, a more rigorous development, retaining the
momentum term, is beyond the scope of this work. The present development
follows that of Aziz and Settari (1979, p. 337-341).
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2.4.2. The Well-Riser Model

When flow rate or pressure is specified at the land surface for a given
well, the well-riser calculation needs to be performed in conjunction with the
well bore flow-rate allocation described above. This calculation consists of
a simultaneous solution of the macroscopic equations of total energy, momentum
and mass (Bird and others, 1960, p. 209-212) for the change in pressure and

temperature over the well-riser length.

The total-energy or enthalpy equation is written for steady flow either

up or down the well riser as a rate of change with distance along the riser,

dH dv

r r _ .
T + g cos(-)r + Vr az = QHr(Q), (2.4.2.1)

where

is the specific enthalpy of fluid in the riser (J/kg);

v_is the average velocity across the riser at a given £-location
(m/s);

0 _ is the angle between the well riser and vertical (degrees);

is the heat transfered per unit mass per unit length to the

fluid in the riser (J/kg-m); and

£ is the distance along the well-riser casing (m).

Energy loss by viscous dissipation has been neglected. All quantities are

averages across the riser-pipe cross section at a given level.

The equation for momentum along the well-riser axis also is written for

steady flow as a differential balance along the well riser:

dv dp_ prvr2

r -0 -
2pr v.gg ¢ P, 8 cosBr + az F er fr =0 ; (2.4.2.2)
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where
is the fluid density in the riser (kg/m3);

P

p_ is the pressure in the riser (Pa);

r is the internal radius of the well riser (m); and
f

is the hydraulic-head-loss friction factor (-).

Finally, the macroscopic-mass balance, written in differential form as a

rate of change along the riser, is:

PV, = O, /T2 (2.4.2.3a)

where

QFr is the total mass-flow rate in the riser (kg/s).

Differentiation with respect to length yields:

dvr dpr

P 3@ TV, iz - 0. (2.4.2.3b)
To solve equations 2.4.2.1, 2.4.2.2, 2.4.2.3a, and 2.4.2.3b, the enthalpy

tables (Keenan and others, 1969, p. 2-7 and 104-107) are used for Hr(p’T)’
equation 2.7a is used for the density equation of state, and the Fanning
friction factor, using the Moody correlation (Perry and others, 1963,
p. 5-20), is used to calculate fr as a function of velocity. The enthalpy for
pure water is adjusted for other fluid mixtures according to equation
2.2.3.1b. For turbulent flow, the friction factor is a function of pipe
roughness. The user needs to supply a value for pipe roughness, and some
typical values for pipe roughness from Shames (1962, p. 300) are given in
table 2.1. Changes in viscosity with temperature along the riser are

neglected.
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Table 2.1.--Pipe-roughness values

Pipe Pipe roughness

type (millimeters)

Drawn tubing x 1074
Steel or wrought iron 3.8 x 1073
Galvanized iron X 1072
Cast iron 2.2 x 1072

The heat transferred to the fluid in the riser must pass from the
surrounding medium to the riser pipe, then from the riser pipe to the fluid.

The heat transferred per unit mass of fluid per unit length of riser is then:

2nr
r

QFr

Q (2 = UL(T, () - T_(2)) ; (2.4.2.4)

where
Tr is the fluid temperature in the well riser (°C);
Ta is the ambient temperature in the medium adjacent to the
riser (°C);
U, is the overall heat-transfer coefficient for the fluid, riser

T
pipe and surrounding medium (W/m2-°C).

The overall heat-transfer coefficient is given by:

= + + : (2.4.2.5)
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where
Arr is the wall thickness of the riser pipe (m);
FCJ(t) is the dimensionless part of the Carslaw and Jaeger (1959,
p. 336) solution for heat flux to an infinite medium from
a constant-temperature cylindrical source (-);
h_is the local heat-transfer coefficient from the fluid to the

riser pipe (W/m2-°C);

K__ is the thermal conductivity of the medium surrounding the riser
pipe (W/m-°C); and

K_ is the thermal conductivity of the riser pipe (W/m-°C).

Equation 2.4.2.5 is a simplification of the relation for the overall heat
transfer coefficient for conduction through cylindrical walls (Bird and
others, 1960, p. 288) combined with the Carslaw-Jaeger solution for heat flux
to an infinite medium from a cylindrical source (Carslaw and Jaeger, 1959,

p. 336). It is valid for wall thicknesses that are small relative to the

riser-pipe radius.

The dimensionless heat-flux function, FCJ(t), can be approximated by the

following two series:

(1) For short time, t, (Carslaw and Jaegar, 1959, p. 336):

~p S
Foy2F. 3 for 1<l (2.4.2.6a)
where
S = % -xHE L I
Fop2@u) “+% - %)%+ 33 (2.4.2.6b)
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and where

T is the dimensionless time defined by:

DHrmt
t = (r + Ar )2 y (2.4.2.6C)
r r
and where
D is the thermal diffusivity of the medium surrounding the well

Hrm
riser (m2/s).

(2) For long times, the asymptotic expansion was derived by Ritchie and
Sakakura (1956):

FCJ ] FEJ ; for t >3.6 ; (2.4.2.7a)

where

F.Y o= 200 v M 1-.5772080 )" - 1.3118(2en x) "2

cJ
+.2520 (20 x)™2 + 3.9969 (£n x) *
-5
+ 5.0637 (£n %) 7]
+ —%; (t2n ) M en ¥ -1.1544(2n x) 2]
e
-2 v 1(2n x)'3 ; (2.4.2.7b)
X = ﬁ% ; (2.4.2.7¢)
o2Y
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and where

Yy is Euler's constant: £ 0.5772.

In equation 2.4.2.7b, terms of higher order than (£n x)_6 and t-l(ﬂn X)-3
have been dropped. Carslaw and Jaeger (1959, p. 336) present a lower-order
version of equation 2.4.2.7b that is accurate for dimensionless time much
greater than 3.6. The estimated error is on the order of 10 percent for
dimensionless time, 1, greater than 3.6. For a typical rock medium, this
truncation means that the time must be greater than about 3.6 X 10% s, or
about 0.4 d. The short-time approximation, equation 2.4.2.6b, is good for
time less than about 0.1 d. For intermediate time, the heat-transfer function

5 evaluated at t=1 and FL

is estimated by linear interpolation between FCJ cJ

evaluated at 1=3.6.

Note that the heat-flux function in equation 2.4.2.5 is a function of
time; whereas, the mechanical and thermal-energy balances are at steady-state.
This is a consistent approximation, provided it is assumed that the heat
transfer from the fluid to the riser pipe and through to its outer boundary is
rapid, relative to rates of change in temperature at the fluid-inlet end of
the riser pipe; and, that changes in the fluid-temperature profile within the
riser pipe re-equilibriate quickly, relative to induced temperature changes in
the adjacent medium. This approach parallels that of Ramey (1962), with the
difference being that the heat-flux solution from a cylinder at constant
temperature is used, instead of the temperature solution for the constant
heat-flux case. The former solution is considered to more accurately describe

the physical situation.

Values for the local heat-transfer coefficient, hr in equation 2.4.2.5,
can be determined from correlations, such as those of McAdams (1954, p.
241-243) or Sieder and Tate (given in Bird and others, 1960, p. 399), between
the Nusselt number, the Prandtl number, and the Reynolds number for forced

convection in tubes.
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The correlation from McAdams (1954, p. 219) that is valid for turbulent flow

in the well-riser pipe is:

2r h p.v ’ CeH

L = p.023 ==L X ; (2.4.2.8)

where

H. is the viscosity of the fluid in the riser pipe (kg/m-s).

The well-riser calculation is developed by combining equations
2.4.2.1-2.4.2.3b with equation 2.2.1.1b and the derivative of equation

2.2.3.1a for the enthalpy function. The resulting equations are:

2f
v:Zp - 1 v: B dp, _ Ve'r (2.4.2.9)
r'p pr r'T TR = | g cos er + er
2
oH| 1. oH EEE 27[rrUT T -1 ) +vrfr
B apIT [ aTlp i} _.dj?,-d i QFr a'r er ]

Using the thermodynamic relationships:

50 1
§§| S U ; (2.4.2.10a)
apIT P, aT P
and
oH| _ .
o= ce s (2.4.2.10b)
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we can reduce equation 2.4.2.9 to two simultaneous ordinary differential
equations:

[ -

dpj

r - c _BV2

de f Tr

dTr

- - 2 .

de BT Tr/pr B,V 1/pr
L - L _

2 .
g cos Gr + ve fr/2rr

1 r 1 -1
[ + + =——=— ] (T -T ) + v3f /2r
QF rh rrK KreFCJ(t) a'r rr r

-1 -
2 . - 2,2
[Eprr l/pr)cf TrBTvr/p{] . (2.4.2.11)
These equations are coupled through the density, velocity, and
temperature terms. The boundary conditions are known at one end of the riser.

For injection:

at z =2z p*= pinj; T = Tinj ; (2.4.2.12a)
For withdrawal:
at z =2z .3 P =P g T = de ; (2.4.2.12b)
where
z 4 is the elevation of the well datum (m); and
Zg is the elevation of the land surface (m).

Equations 2.4.2.6a-c and 2.4.2.7a-c are used to evaluate the heat-transfer

function FCJ'
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The mass, enthalpy, and mechanical-energy-balance equations are solved
either up or down along the well riser, depending on the direction of fluid
flow, to obtain the pressure and temperature at the riser bottom for injection
conditions, or at the riser top for production conditions. Coupling this
.well-riser calculation to the well-bore model enables specified pressure,
temperature, and solute concentration, or specified flow-rate conditions at

the land surface, to be employed.

When the flow rate at the land surface is specified as an injection, the
surface temperature and solute concentration also need to be specified. The
well-riser calculation will give the necessary surface pressure to achieve the
specified flow rate. If a production or withdrawal flow rate is specified,
the surface pressure, temperature, and solute concentration are determined by

the well-bore and well-riser calculations.

When the surface pressure is specified, the well-bore and well-riser
calculations determine the flow rate, surface temperature, and solute
concentration for a production well. Surface temperature and solute
concentration also need to be specified in the case of an injection well. The
ambient-temperature profile with depth along the well riser is specified by

the user.

A flow rate and pressure constraint at the surface can be specified and
the slower of the specified flow rate or the flow rate that results from the
specified-pressure constraint will be applied to the aquifer and apportioned

as described previously.

A well also can be used as an observation well. In this case, none of
the well-bore or well-riser calculations are necessary. The purpose of an
observation well is to record dependent variable data (pressure, temperature,
solute-mass fraction) for plotting versus time at the conclusion of the
simulation. The recorded data are the aquifer values at the well-datum level,

which is at the top of the uppermost screened interval.
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In summary, a well can be a production well, an injection well, or an
observation well. The flow rate can be specified with or without a pressure
constraint, or the pressure can be specified either at the land surface or at
the well-datum level. For three-dimensional cartesian coordinates, the
allocation of the flow to each layer can be determined by the relative
mobility of the layer, or by the product of the mobility times the pressure
difference. For cylindrical coordinates, the allocation is determined by the
product of the mobility times pressure difference, with allowance for
gravitational effects, because the well-bore equations are solved
simultaneously with the ground-water flow equations for the region adjacent to
the screened intervals. Application of the well-flow terms for each layer to
the ground-water flow equation can be explicit or semi-implicit in time for
three-dimensional cartesian coordinates; it is fully implicit for cylindrical

coordinates.

2.5. BOUNDARY CONDITIONS

2.5.1. Specified Pressure, Temperature, and Solute~Mass Fraction

The first type of boundary condition, known as a Dirchlet boundary
condition, is a specified pressure condition for the ground-water flow
equation, a specified temperature condition for the energy-transport equation,
and a specified-mass fraction for the solute-transport equation. These
conditions can be specified independently as functions of location and they

also can vary independently with time. Mathematically, we have:
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P =py (x,t), for x on 8 ; (2.5.1.1a)

3
i
3

on 8! ; and (2.5.1.1b)

(x,t), for 1

]

(x,t), for x on S; ; (2.5.1.1c)

where

is the pressure at the specified boundary (Pa);

T, is the temperature at the specified boundary (°C);

is the mass fraction at the specified boundary (-);

S! is the part of the boundary with specified pressure;

Sl is the part of the boundary with specified temperature; and

S! is the part of the boundary with specified mass fraction.

Care needs to be used in specifying the temperature and mass fraction at
fluid-outflow boundaries, because, on boundary surfaces across which fluid
flow occurs, the advective transport of heat and solute is assumed to dominate
over any diffusive or dispersive transport. Thus, it is physically
unrealistic to specify a temperature or solute concentration at an outflow
boundary because the ambient fluid will determine the temperature, and solute

concentration there.

2.5.2. Specified-Flux Boundary Conditions

The default boundary condition for the numerical model is no fluid, heat,
or solute flux across the boundary surfaces. Normal fluxes of fluid, heat,
and solute, known as Neumann boundary conditions, can be specified over parts

of the boundary as functions of time and location. However, they cannot be
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specified independently, because, on boundary surfaces where a specified fluid
flux exists, the advective transport of heat and solute is assumed to dominate
over any specified diffusive or dispersive flux of these quantities. This
assumption means that, on fluid-inflow boundaries, the temperature and mass
fraction of the inflowing fluid needs to be specified. These specifications
determine the heat and solute fluxes. At fluid-outflow boundaries, the
temperature and mass fraction are determined by the ambient fluid values in
the region, thus giving the heat and solute fluxes. Therefore, it is not
physically realistic to specify temperatures and mass fractions at outflow
boundaries. On boundary surfaces where no fluid flux is given, heat and
solute fluxes may be specified. Heat fluxes represent thermal conduction and

solute fluxes represent solute diffusion.

For the reasons discussed in section 2.5.1, it also is not physically
realistic to specify dispersive heat or solute fluxes across boundary surfaces
that have specified pressures. However, total heat or solute fluxes may be
specified for inflow boundaries. These fluxes are the advective fluxes
approaching the boundary from outside the region, and they are equal to the
advective plus the dispersive fluxes leaving the boundary and entering the
region. For outflow boundaries, the boundary condition requires that the
dispersive fluxes be zero. Thus, only advective flux of heat and solute
occurs at outflow boundaries. Again, the advective transport of heat and

solute is assumed to dominate over dispersive flux.

Specified fluxes are expressed mathematically as:

B

U, = (qFx, Uy qF ) for x on sg ; (2.5.2.1a)
- B 2 .

Uy = (qu, Uy qHz) for x on 8% ; (2.5.2.1b)

Qe = (q qB q ) for x on S2 ; (2.5.2.1¢)

Sn Sx’ Sy’ 7Sz = w
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where

qgi is the component of the fluid flux in the ith direction at the
boundary (m3/m2-s);

qgi is the component of the heat flux in the ith direction at the
boundary (W/m?2);

B

dg; is the component of the solute flux in the ith direction at the
boundary (kg/m?-s);
Y is the normal component to the boundary surface of the fluid-flux
vector (kg/m?-s);
is the normal component to the boundary surface of the heat-
flux vector (W/m2);
is the normal component to the boundary surface of the solute-
flux vector (kg/m?-s); and
S2Z are parts of the boundary with specified-fluid, heat, or solute
fluxes respectively; u = p,T,w.

Note that the specified-fluid flux, > is given as a volumetric flux. A
fluid density also needs to be specified for the case of inflow to the region.
The density in the region at the boundary is used for computation of mass
outflow rates. Also note that flux is a vector quantity with components
expressed relative to the coordinate system of the simulation region.

Examples of physical-boundary conditions that can be represented as specified-
flux boundaries include infiltration from precipitation, lateral boundaries
where the pressure gradients can be estimated, and simple steady-state flow

fields where recharge- and discharge-boundary flow rates are known.

2.5.3. Leakage Boundary Conditions

A leakage boundary condition has the property that a fluid flux occurs in
response to a difference in pressure and gravitational potential across a
confining layer of finite thickness. Usually the permeability of this layer
will be orders of magnitude smaller than the permeability of the simulation

region and the aquifer region on the other side of the confining layer.
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Representation of leakage boundary conditions is based on the approach of
Prickett and Lonnquist (1971, p. 30-35), which has been generalized to include
variable-density and variable-viscosity flow. The mathematical treatment of
leakage boundaries is based on the following simplifying assumptions:

(1) Changes in fluid storage in the confining layer are neglected;

(2) confining-layer capacitance effects on heat and solute transport are
neglected; (3) flow, heat, and solute transport are affected by the leakage
fluxes that enter the region, but flow, heat, and solute conditions that exist
on the far side of the confining layer outside the simulation region are not
affected by fluxes that enter or leave the simulation region; and (4) flow and
transport properties in the confining layer are based on the average of the
fluid density and viscosity on either side. These assumptions are quite
restrictive; but, in cases where they are not valid, some of the region
outside the boundary probably needs to be included in the simulation region.
Flow and transport rates are functions of differences in pressure, temper-
ature, and solute-mass fraction at a point in time and are not affected by the

previous values of these differences.

2.5.3.1. Leaky-Aquifer Boundary

A leaky-aquifer boundary can be adjacent to any part of the simulation
region. For illustration, assume that it is part of the upper boundary
surface that is overlain by a confining layer. Another aquifer lies above the
confining layer with a pressure distribution at its contact with the confining
layer which is a known function of time. The geometry is shown in figure 2.2.
We are interested in the flux normal to the boundary between the confining

layer and the simulation region, located at elevation z, in figure 2.2, Under

B
these assumptions, the leakage boundary flux is given by:
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Figure 2.2.--Sketch of geometry for a leaky-aquifer boundary condition.

qL = 'p—Lb'L [Pe"e = (pB + pBng)

-(pe- pB)g (ze + zB)/Z], for x on S3; (2.5.3.1.1a)
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with P
H (2.5.3.1.1b)

%(uB+ pe) ; (2.5.3.1.1¢)

where
q is the fluid flux across the leakage boundary (m3/m2?-s).
¢ is the potential energy per unit mass of fluid in the outer
aquifer (N-m/kg);
is the pressure at the simulation-region boundary (Pa);
p_ is the pressure at the top of the confining layer (Pa);
is the fluid density at the simulation-region boundary (kg/m3);
Pe is the fluid density in the outer aquifer (kg/m3);
k. is the permeability of the confining layer (m2?);
is the fluid viscosity in the confining layer (kg/m-s);
b, is the thickness of the confining layer (m);
zp is the elevation of the simulation-region boundary (m);
z 1is the elevation at the top of the confining layer (m); and
$3 is the region boundary surface over which a leakage-~
boundary condition exists.
are specified functions of position

The terms ¢e, Pe? k bL’ and 2z

L M B
along the leakage boundary; ¢e and Pe also can be functions of time. The mass
flux is calculated using Pe if the flux is into the simulation region, and
using pB if the flux is out from the simulation region. This choice of
density is an approximation because it will take some time for the fluid in
the confining layer to attain the limiting value after a change in flow
direction takes place. However, this approximation is consistent with the

neglect of transient flow and storage effects within the confining layer.

The heat and solute fluxes are assumed to be purely advective. They are
obtained from enthalpies and mass fractions of the outer aquifer or at the
boundary of the simulation region depending on the flux direction. Thus:

= . 3.
Qyp = Hpeqp» if qp > 0, for x on 8%, (2.5.3.1.2a)

= Hgppap, if g < 0 ; (2.5.3.1.2b)

55



qgp = WP.qp» if qp > 0, for x on s3 (2.5.3.1.3a)

= wpPpdr > if qp < 0 ; (2.5.3.1.3b)

where
L is the heat flux across the leakage boundary (W/m2?);
H is the specific enthalpy of the fluid in the outer aquifer (J/kg);
HB is the specific enthalpy of the fluid at the region boundary
(J/kg);
dq1. is the solute flux across the leakage boundary (kg/m2-s);
v, is the solute mass fraction in the outer aquifer (-); and

2N is the solute mass fraction at the region boundary (-).

Note that He and w, are specified functions of position along the leakage

boundary and time.

2.5.3.2. River-Leakage Boundary

The river-leakage boundary condition is a second type of leakage-boundary
condition that is very similar to a leaky-aquifer condition, with the
following differences: (1) This boundary condition is appropriate only for
unconfined aquifer regions and is at an upper- or lateral-boundary surface;
(2) the less-permeable boundary layer is now the riverbed-sediment layer, that
is basically a piecewise-linear feature that traverses the upper boundary of
the aquifer region; (3) a limit on the maximum flux from the river to the
aquifer is imposed. Additional assumptions for the river-leakage option are:
(1) The riverbed thickness is assumed constant over each cross section of the
river; and (2) pressure and elevation differences and fluid properties are
taken at the river centerline, representing conditions across the riverbed.

An area factor is introduced to account for the fact that the riverbed area is
only a fraction of the region boundary traversed by the river. The flux limit
is set by not allowing the flux to increase after the aquifer pressure plus

gravitational potential decreases to less than the gravitational potential at
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the bottom of the river. Physically, this means that if the water table
declines below the bottom of the riverbed, the increased resistance to flow,
because of the porous medium becoming partially saturated, prevents further
increases in flux from the river to the aquifer. Thus, the flux limitation is

a crude approximation to the physical situation. The simplified geometry of a
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Figure 2.3.--Diagrammatic section showing geometry for a

river-leakage boundary.
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river-leakage boundary is shown in figure 2.3. Note that the z-axis is

positive in the vertically upward direction. The present version of the HST3D

program cannot simulate river leakage with a tilted coordinate system.

With the above assumptions, equations 2.5.3.1.1a and 2.5.3.1.1b become:

a = Ypqp; for x on st ; (2.5.3.2.1a)
with
¢e = 8Zppg (2.5.3.2.1b)
and Ypmax - IR Py = 0’ (2.5.3.2.1c)
where
ar is the fluid flux across the river-leakage boundary from the river
to the aquifer (m3/m2-s);
YRmax is the maximum fluid flux from the river to the
aquifer (m3/m2-s); and
¢e is the potential energy per unit mass of fluid in the river
(Nt-m/kg);
YR is the fraction of riverbed area per unit area of aquifer
boundary (-=); _
ZpFs is the elevation of the water surface of the river (m); and

S% is the region boundary surface over which a river-leakage boundary

condition exists.

Note that ¢e’ pe, kL’ bL’ pe, zB, and YR are specified as functions of
position along the river length, and at ¢e and pe also can be functions of
time. For calculating ¢e’ the value of atmospheric pressure can be taken as
zero, because pressures are relative to atmospheric pressure. The mass flux
is calculated using Pe if the flux is into the aquifer, and using Py if the
flux is out from the aquifer. The heat and solute fluxes are assumed to be

purely advective, and are obtained from the enthalpies and mass fractions of
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the river fluid, or from the aquifer at the leakage boundary, depending on the
flux direction, as given by equations 2.5.3.1.2a-b and 2.5.3.2.3a-b with qp,
replaced by 9g- The enthalpy variation with pressure is neglected for the

river-leakage boundary condition, as this variation is assumed to be small.

2.5.4. Aquifer-Influence-Function Boundary Conditions

The aquifer-influence-function (AIF) boundary conditions have been
presented in the petroleum reservoir-simulation literature. Several methods
have been used to calculate water influx at reservoir-aquifer boundaries. For
a summary, the reader is referred to Craft and Hawkins (1959, ch. 5) and Aziz
and Settari (1979, sec. 9.6).

The utility for ground-water flow simulation of fluid-flux calculations
using aquifer-influence functions results from the fact that they enable a
simulation region to be embedded within a finite or infinite surrounding
region, for which the aquifer properties are known only in a general sense,
and where the outer-aquifer-region flow field influences the inner-aquifer
region of interest only in a general way. The primary benefit of using AIF
boundary conditions is the reduction in size of the simulation region,

resulting in a savings in computer-storage requirement and computation time.

Suppose that an aquifer region can be divided into subregions (fig. 2.4),
where the inner-aquifer region is the one of primary interest, and the
outer-aquifer region is less completely identified with respect to aquifer
properties and geometrical configuration. The outer-aquifer region may
completely or partially surround the inner-aquifer region, as shown in figures
2.4A and 2.4B. Variable density and nonisothermal flow may be simulated in
the inner-aquifer region, but not in the outer-aquifer region. The actual
simulation region may be reduced to only the inner-aquifer region, and the
boundary condition at the boundary between the two regions (the AIF boundary)
is taken to be the AIF boundary condition representing the outer-aquifer
region. Aquifer-influence functions are analytical expressions that describe

the flow rate, pressure, and cumulative flow at the boundary between the
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inner~aquifer and outer-aquifer regions, in response to pressure variations at
the boundary. For the purposes of ground-water flow simulation described
herein, the cumulative-flow aquifer-influence functions are not of concern.
Flow from the outer-aquifer region is assumed to influence the inner-aquifer
region of simulation, but flow to the outer-aquifer region does not affect any

conditions there.

The aquifer-influence functions that describe transient flow across the
AIF boundary are based upon analytical solutions to the ground-water flow
equation in the outer-aquifer region. To obtain an analytical solution, the
aquifer and fluid properties of the outer-aquifer region are assumed to be
constant and uniform, and the geometry of the boundaries between the inner-

and outer-aquifer regions need to be approximated by simple shapes.

Two types of aquifer-influence functions currently are available for the
heat- and solute-transport simulator; one type treats the outer-aquifer region
as a "pot;" the other type uses a transient-flow solution for simple-geometry
and simple-boundary conditions. An aquifer-influence function based on the
assumption of steady-state flow also exists in the petroleum-reservoir
simulation literature, but it only is a restricted form of the leakage-
boundary condition presented in section 2.5.3.1. Only one type of aquifer-

influence function is allowed in any given simulation.

2.5.4.1. Pot-Aquifer-Influence Function

The pot~aquifer-influence function is based on the assumption of an
outer-aquifer region with exterior boundaries that are impermeable (fig. 2.5).
The outer-aquifer region needs to have volume and compressibility that are
sufficiently small so that the pressure in this outer-aquifer region always
will be virtually in equilibrium with the pressure distribution along the
boundary surface between the inner- and outer-aquifer regions. Then, flow
will occur in response to the rate of change of pressure at this boundary.

The governing equation is obtained from mass conservation in a vertically
deforming, compressible, porous medium. Using the Gauss divergence theorem

(Karamcheti, 1967, p. 73) and assuming a uniform, constant, fluid density and
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Figure 2.4.--Plan view of inner- and outer-aquifer regions and
boundaries: A, Outer-aquifer region completely surrounding
inner region; B, Outer-aquifer region half-surrounding inner-

aquifer region.
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porosity, we obtain by integration over the outer-region volume:

Q = (o * £Bp,) e v, s (2.5.4.1.1)

where
QA is the volumetric flow rate across the boundary between
the inner- and outer-aquifer regions; (positive is into the

inner-aquifer region); (m3/s).

is the spatial average of the rate of pressure change in the
outer region (Pa/s);

e is the bulk compressibility of the porous medium in the outer-
aquifer region (Pa-l);

B, is the fluid compressibility in the outer-aquifer region

-1
(Pa 7);
€. is the porosity in the outer-aquifer region (-); and
Ve is the volume of the outer-aquifer region (m3).

Because pressure equilibrium is assumed:

ape = apB
at ot

; (2.5.4.1.2)

where
apB is the spatial average rate of pressure change at the
ot boundary of the inner-aquifer region (Pa/s).

Equation 2.5.4.1.1 is in a form suitable for calculating overall fluid

flow balances but it is difficult to distribute the flow over the AIF boundary
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ion.

and outer-aquifer regions with an impermeable exterior boundary

Figure 2.5.~-A, plan view, and B, cross-sectional view of inner-
for the outer-aquifer reg



of the simulation region, particularly when the rate of change of boundary
pressure is not uniform over the boundary. Allocation of the flow rate will

be explained in section 3.4.4 on numerical implementation.

2.5.4.2. Transient-Flow, Aquifer-Influence Function

The transient-flow solution method employs the Carter-Tracy AIF
calculation technique (Carter and Tracy, 1960) and analytical solutions
presented by Van Everdingen and Hurst (1949). A brief summary of the method
follows. A detailed presentation is given by Kipp (1986).

Let the AIF boundary between the inner-aquifer or simulation region and
the outer-aquifer region be approximated by a cylinder of a given radius and
height. A plan view is presented in figure 2.5A. For a simulation region
that is a rectangular prism, this boundary cylinder will be a severe
approximation of the actual boundary shape. The outer boundary of this
outer-aquifer region is a cylinder at a finite or infinite radius. The
thickness of the outer-aquifer region is assumed to be uniform, with
impermeable upper and lower boundary surfaces. Ground-water flow in this

outer-aquifer region is radial at a given elevation, and the pressure

satisfies:
ap k 82p ap
(abe + SeBpe) ot - pe [arz + r ar ’ (2.5.4.2.1)
where

r is the radial coordinate (m);
p_is the pressure in the outer-aquifer region (Pa);
k is the permeability in the outer-aquifer region (m?);
M is the viscosity in the outer-aquifer region (kg/m-s);
o, is the bulk compressibility of the porous medium in the outer-

aquifer region (Pa~1);
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Bpe is the compressibility of the fluid in the outer-aquifer
region (Pa~1); and

€, is the effective porosity of the outer-aquifer region (-).

The initial condition is:

0
at t =0, p = P, 5 (2.5.4.2.2)

where

*0

P, is the initial uniform pressure (Pa).

Van Everdingen and Hurst (1949) used two different boundary conditions at
the AIF cylindrical boundary: one condition was constant pressure, and the

other condition was constant flow rate.

The boundary conditions are either specified pressure:

at r = r;, p_ =Py 5 (2.5.4.2.3a)

where
ry is the interior radius (m); and

Py is the constant, specified pressure at the boundary (Pa);

or specified flow rate:

ap Q, H
at r = rp; 5= = o S (2.5.4.2.3b)
T ee
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where
QA is the constant, specified flow rate at the boundary (positive
is from the outer-aquifer region to the inner-aquifer region)
(m3/s); and

be is the thickness of the outer-aquifer region (m).

At the exterior cylindrical boundary, the condition is, for an infinite

region:

0
as r > ®, p_ > P, ; (2.5.4.2.4a)

and, for a finite region, either no flow,

3p
at r =r £

B’ 3r =~ 0 (2.5.4.2.4b)

where

r. is the exterior radius (m);

E
or specified pressure:

0

=p_ . (2.5.4.2.4¢)

at r = rgs) P e

e
Solutions to the dimensionless form of equations 2.5.4.2.1-2.5.4.2.4 are
given in Van Everdingen and Hurst (1949) and were derived using Laplace
transform techniques. For example, the flow-rate response to a unit change in
pressure boundary condition (eq. 2.5.4.2.3a) and the pressure response to a
unit withdrawal flow-rate boundary condition (eq. 2.5.4.2.3b) for an infinite

outer-aquifer region are:




2, .
4 fm e-A taa

Q:(t) = ‘o ; (2.5.4.2.5a)
v " AL + Y2 ()]
o] [o}
and
2 ”~
-t
Pﬁ(t’) = 5% f: ; '2e dAZ ; (2.5.4.2.5b)
ATLIT(A) + YI(A)]
respectively, with
k t
t° = € ; (2.5.4.2.5¢)
2 (0 +¢ B_u
I e'pe’te

where
Ji is the Bessel function of the first kind of order ij;
Yi is the Bessel function of the second kind of order i; and

t” is the dimensionless time (-).

Equation 2.5.4.2.5a was presented by Jacob and Lohman (1952) in a
different form as a solution to the constant drawdown problem for flow to a
well. These two aquifer-influence functions will be referred to as the
flow-rate response to a2 unit-step pressure change Qﬁ, and the pressure

response to a unit-step withdrawal flow rate, Pﬁ, respectively.

The concept of superposition or convolution (Tychonov and Samarski, 1964,
pP. 209) is used to derive the aquifer-influence functions from the unit-step
response functions for a transient-pressure function at the boundary between
the inner- and outer-aquifer regions. Thus, the flow-rate response of this
ground-water flow system to a time-varying pressure at the inner boundary of

the outer-aquifer region can be written as:
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- _ _ ¢t .
QA = fo PB(U R T dt ; (2.5.4.2.6a) .
where
pplry,t’) - p
pi(t) = 2l —p 2 (2.5.4.2.6b)
pe - pB
and where

p~ is the dimensionless pressure (-); and

pBo is the boundary pressure at time zero that initiates flow (Pa).

In principle, equation 2.5.4.2.6a could be used to calculate the flow
rate into the simulation region from the outer-aquifer region. However, this
is not practical when pé(t) is not known in advance as in the present case of
numerical simulation of ground-water flow in the inner-aquifer region. The
integral needs to be recomputed repeatedly from the initial time to the

current time, because time is a parameter in the integrand as well as being

the upper limit of the integration variable. Carter and Tracy (1960), using
an approach given by Hurst (1958), developed an approximate algorithm to
avoid the repeated computation of equation 2.5.4.2.6a as the simulation
calculation progresses. However, it requires the discretization of time and

will be treated in section 3.4.4.2.

2.5.5. Heat-Conduction Boundary Condition

A boundary condition is available for pure-heat conduction without fluid
flow or solute transport. This boundary condition provides for the simulation
of heat gain or loss at a boundary which confines the ground-water flow. The
boundary heat flux depends on the evolving temperature profile in the con-
ducting medium exterior to the simulation region. One-dimensional conduction
is assumed perpendicular to the boundary surface and conduction in the

adjacent medium parallel to the boundary because of lateral temperature
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variation is neglected. The penetration of heat into or the withdrawal of
heat from the boundary medium is assumed to progress only a finite distance
out from the boundary. Beyond this distance, the temperature is assumed to
remain at its initial uniform value. This assumption is for convenience in
the numerical implementation. Constant, uniform thermal properties are
assumed in the exterior medium. Based on these assumptions, the one-
dimensional heat-conduction equation can be used to represent the boundary

condition. This equation is:

aTe a2Te
Psese 3t Ke azi 5 (2.5.5.1a)

p_c__ is the heat capacity per unit volume of the adjacent medium (J/m3-°C);
K is the thermal conductivity of the adjacent medium (W/m-°C);
Te is the temperature in the adjacent medium (°C); and

z_ is the coordinate in the outward normal direction to the boundary (m).

The initial condition is:
0
t = 0, Te = Te(zn)’ (2.5.5.1b)

where

TZ is the initial temperature profile (°C).

The boundary conditions are:

at z =0 ; Te = TB(t) H (2.5.5.1c)
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and at
(2.5.5.14d)

where

TB is the boundary temperature at the aquifer boundary (°C),

bHC is the effective thickness of the conducting medium outside the

region (m).

The thermal properties of the adjacent medium are assumed constant and

uniform. Thus:

D, = —= ; (2.5.5.2)

where

DHe is the thermal diffusivity for the adjacent medium (m2/s).

Since the heat flux depends on the temperature profile in the exterior
medium which in turn depends on the thermal history of the simulation, a
simplifying approximation is used. This approximation eliminates the need to
recompute or save the temperature-profile history during the course of the

simulation.

The boundary-value problem specified by equations 2.5.5.la-d can be
resolved into simpler problems, as shown by Sneddon (1951, p. 162-165) or
Tychonov and Samarski (1964, p. 203-209), using various forms of Duhamel's

Theorem. Two simpler problems, for a general time interval, are:
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2
g%l = DHe ng}; on 0< z, < bHC and to <t<ty . (2.5.5.3a)
n

Boundary conditions:

at z = 0; Ty =03 (2.5.5.3b)

[}
o

at z Ty =0 . (2.5.5.3c)

Initial condition:

)
att =tg; Ty = Te(zn) ; (2.5.5.3d)
and
T, _ 32T
3t = Dy 5E;§ on 0< z < by, and t < t< ty (2.5.5.4a)

Boundary conditions:

at z = 0; Ty = TB(t) H (2.5.5.4b)

at z = bHC ; Toa =0 . (2.5.5.4¢)

Initial condition:

att =tg; Ta=0; (2.5.5.4d)

where
T1(z,t) is the temperature solution to the first heat-conduction
problem (°C); and
To(t) is the temperature solution to the second heat-conduction
problem (°C).
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The total temperature solution is the sum of T; and T, and the boundary

heat flux is derived from the gradient of this temperature. However,

because the boundary-temperature function is not known in advance the

following approximation is made

3Te
e = K 5z_ (2.5.5.5a)
Z=0
n
T2=TB(t0)
[T9(T{+T2)
= - Ke azn
z =20
n
T2=TB(to)
o 9(T11T2)
+ T o 8Ty ], (2.5.5.5b)
z =0
n
T2=TB(tO)—

where
Yic is the heat flux at a heat-conduction boundary at a given
boundary temperature and time (W/m2?); and

6TB is the change in boundary temperature in the time interval to to
t (°C).

Equation 2.5.5.5b is simply a Taylor-series expansion of the flux as a

function of the variable boundary temperature.
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By interchanging the order of differentiation and using the facts that

Ty _ . (2.5.5.6a)
aT ’
B
and
M2 - 1 (1) (2.5.5.6b)
oT U
B
where
TU is the solution to equations 2.5.5.4a-d with TB =1 (°C);
we obtain:
[-aTe 8Tu oT ]
= - —_ —_— 5 .
Uc K. | 53 _ t 52 _ B|, for x on S® ; (2.5.5.7)
n|z =0 z =0
n n
B T=Tg(to) _

where

$° is the part of the boundary that is a heat-conduction boundary.

The temperature, T, now satisfies equations 2.5.5.la-d with the time
dependence of the boundary condition removed in equation 2.5.5.1c. This
approach to the treatment of heat-conduction boundary conditions was presented
by Coats and others (1974) in the appendix to their paper. A heat-conduction
boundary condition also could be treated like the transient AIF boundary

condition, but that is beyond the scope of this work.
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2.5.6. Unconfined Aquifer, Free-Surface Boundary Condition

For an unconfined aquifer, a free-surface boundary exists with a position
in space and time that is unknown before the flow equations are solved.
Therefore, two boundary conditions need to be imposed. The first is that
pressure is atmospheric at the free surface. The second is the kinematic
condition expressing the fact that the movement of this surface of atmospheric

pressure needs to satisfy a continuity equation at the free surface.

The free-surface boundary is assumed to be a sharp interface between the
fully saturated region of simulation and the unsaturated porous medium
outside. The zone of capillary fringe that is partially saturated and the
surfaces of seepage that exist with free-surface gravity flow are neglected.
Delayed yield effects also are neglected, therefore, the specific yield is
equal to the effective porosity, £, in the vicinity of the free surface. The
effective porosity under draining conditions is less than the porosity used to
calculate interstitial velocity (Bear, 1972, p. 255) but the difference is
assumed negligible for the HST3D simulator. Finally, the z-axis is assumed to

point vertically upward when an unconfined aquifer is being simulated.

The heat- and solute-transport simulator treats the free-surface boundary
in an approximate fashion. The approach follows the ideas of Prickett and
Lonnquist (1971, p. 43-45) extended to a three-dimensional flow and

variable-density system. The pressure condition:

p = 0, on S8(x,t); (2.5.6.1)

where

S6 is the free-surface location that varies in space and time;
is employed, but the kinematic boundary condition is neglected. The absolute
pressure on the free surface is atmospheric, so the relative pressure is zero.
Hydrostatic conditions are assumed to exist in the immediate vicinity of the
free surface. The location of the free surface is determined by interpolation
in the calculated pressure field to determine the location where equation

2.5.6.1 is satisfied. Under this approximate treatment, the free surface
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moves in response to a net gain or loss of fluid in its vicinity. Thus, fluid
mass is conserved, but the kinematics of the free-surface movement are
neglected. This approximation is acceptable when the velocity of free-surface

movement is small relative to the horizontal interstitial velocity.

In addition, the computational region is fixed for the duration of the
simulation. Boundary pressures less than atmospheric imply that the free
surface is below the boundary of the region; whereas boundary pressures
greater than atmospheric imply that the free surface is above this boundary.
As will be explained in section 3.4.6, the free surface is allowed to rise
above the region boundary a short distance which is a function of the vertical
discretization. This allowance enables the free surface to move within a
reasonable range during a simulation. The fluid- and porous-matrix compres-
sibilities usually are taken to be zero for unconfined flow systems, and the

user may specify compressibility values of zero for the HST3D simulator.

2.6. INITIAL CONDITIONS

This heat- and solute-transport simulation code solves only the transient
forms of the ground-water flow and the two transport equations, thus initial
conditions are necessary to begin a simulation. Several options are

available.

For the flow equation, an initial-pressure distribution within the region
needs to be specified. This can be done as a function of position or can be
set to hydrostatic conditions, with the pressure given at one elevation. In
the case of nearly uniform and constant density, an initial potentiometric-
head distribution can be specified, which is the water-table elevation. The
water-table elevation is specified for the upper layer of cells only. No

option to specify a velocity field as an initial condition exists.

75



For the heat-transport equation, the initial-temperature field needs to
be specified. Again, this can be done as a function of position, or
interpolated along the z-coordinate direction from a specified geothermal

profile.

For the solute-transport equation, the initial mass~-fraction field needs
to be specified. This can be done only by specifying values as a function of

position.

As will be described in section 4.6, pressure, temperature, and mass-
fraction fields calculated by one simulation can be used as the initial
conditions for amother simulation, using the restart option. This often is
the easiest way to establish a steady-state flow field before tramnsport is
simulated. Of course, one needs to determine whether or not an initial
steady-state flow field exists for the physical situation being simulated. It
should be noted that, with a hydrostatic or other estimate of initial pressure

conditions, it could take some time to establish the steady-state flow field.

Mathematically, the initial conditions can be stated as follows:
At t=0:

p = p(x), in V ; (2.6.1a)
T =T%%), in V ; _ (2.6.1b)
w=wl(x), inV ; (2.6.1¢)

-

where
x is the vector of position (m),
V is the simulation region; and

p°, T%, w® are the initial dependent variable distributions (Pa,°C,-).
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3. NUMERICAL IMPLEMENTATION

In order to perform numerical calculations that solve the governing
equations, we first need to discretize the partial-differential equations and
boundary condition relations in space and time. Various algorithms are used
to determine parameters and to implement the boundary conditions. Then the
flow and two transport equations are solved sequentially after they have been
modified by a partial Gauss reduction. Finally, the sets of discretized
equations are solved repeatedly, as the simulation time advances, using a
direct or an iterative equation solver. This chapter will cover each of these

steps for the numerical-simulation calculation.

3.1 EQUATION DISCRETIZATION

The classical method of finite differences is used to discretize the
partial-differential equations and boundary conditions in space and time.

Several options are available for the differencing.

The first step in spatial discretization is to construct a mesh or grid
of node points and their associated cells, that covers the simulation region
to a close approximation (fig. 3.1). The grid of node points is formed by
specifying the distribution of nodes in each of the three coordinate direc-
tions; (two directions, if a cylindrical-coordinate system). The volume
associated with each node will be called a cell; it is formed by the cell
boundaries, which are planes that bisect the distance between adjacent node
points. Thus, for the case of unequal nodal spacing, the node points do not
lie at the centers of their respective cells. Boundaries are represented by
planes containing node points. Thus, half-, quarter-, and eighth-cells appear
at various sides, edges, and corners of the mesh, forming the simulation
region (fig. 3.1). The minimum number of nodes required to define a region is
eight, one node at each corner of the rectangular prism. The mesh or grid
described is called a point-distributed grid. Other terms that have been used
are face-centered mesh and lattice-centered mesh or grid. Another term that

has been used for cell is block.
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FULL CELL 0
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ONE-EIGHTH CELL ¢)’ ¢0
a >
\

~N

58
{
‘ NODE POINT

ONE-QUARTER CELL

Figure 3.1.--Sketch of finite-difference spatial discretization

of the simulation region.

The simulation region is discretized into rectangular prisms for the
cartesian-coordinate case (fig. 3.1) and into annuli with rectangular cross
sections for the cylindrical-coordinate case (fig. 3.2). Four types of
regional volume subdivisions are defined (fig. 3.3). The primary subdivision

is the cell that is the volume over which the flow, heat, and solute balances
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are made to give the nodal finite-difference equations. The second sub-
division is the element that is the volume bounded by eight corner nodes in
cartesian coordinates and four corner nodes in cylindrical coordinates. The
element is the minimum volume with uniform porous-medium properties. The

third subdivision is the zone that is a continuous set of elements with the

ONE-HALF CELL RING

ONE-QUARTER CELL RING

FULL CELL RING

Figure 3.2.--Sketch of finite-difference spatial discretization for a

cylindrical-coordinate system.
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same porous-medium properties. The one restriction is that zones need to be
convex. In other words, they need to be rectangular prisms. One zone may not
border another zone on more than one side. Sometimes multiple, adjacent zones
will have to be specified that have the same properties in order to adhere to
this restriction of convex shape. The fourth subdivision is the subdomain
that is the intersection or common volume of an element with a cell. A cell
may have as many as eight subdomains, if it is an interior cell, or as few as

one subdomain, if it is a corner cell. The finite-difference equations are

NEIGHBOR
NODE
o

AN LV EXPLANATION
LOCAL CELL-FACE NUMBER

@ LOCAL SUBDOMAIN-VOLUME NUMBER
2 LOCAL SUBDOMAIN -FACE NUMBER

Figure 3.3.--Sketch of a node with its cell volume showing the cell faces,

the subdomain volumes, and the subdomain faces.
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assembled by adding the contributions of each subdomain in turn to the
equation for a given cell. The primary reason for introducing the concepts of
elements and zones for assigning porous-medium properties is so that
porous-medium properties can be defined easily at the cell boundaries without

the need for harmonic-mean calculations.

A numbering scheme local to the cell is used during coefficient cal-
culation and assembly. Figure 3.3 shows the subdomain local numbering from
one to eight. The six faces are numbered as shown in figure 3.3 and each face
is subdivided into four subdomain faces with numbers for the visible faces as
shown. For the cylindrical system, the corresponding volumes and faces are

numbered in figure 3.4.

A common alternative method for constructing the mesh is to specify the
locations of the planes that form the cell walls. Their intersections form
the cells; then the node points are located in the center of each cell. This
is called a cell-centered or block-centered grid. One advantage of this grid
is that fewer cells are required to span a given simulation region, because

fractional cells do not appear at the boundaries.

The point-distributed grid was selected for this simulator, because the
finite-difference spatial approximations to the dispersive terms in the flow
and transport equations are consistent and convergent for the point-
distributed grid under conditions of variable-grid spacing; whereas, these
approximations are not necessarily consistent and convergent for the cell-
centered grid. As shown by Settari and Aziz (1972, 1974), the local trunca-
tion error for the cell-centered grid has a term that does not necessarily
vanish as the grid spacing is refined. A second reason for selecting the
point-distributed grid is that the presence of nodes on the boundary surfaces
simplifies the treatment of certain boundary conditions. It is common to
approximate spatially distributed, aquifer properties as uniform zones. A
disadvantage of the point-distributed grid is that it is difficult to locate
the cell boundaries, so that they coincide with the zoned-property boundaries.
This difficulty can be avoided by making the properties uniform over an
element rather than a cell. This will be described in the parameter-

discretization section.

81



o
NEIGHBOR
NODE

EXPLANATION
Q LOCAL CELL-FACE NUMBER
@ LOCAL SUBDOMAIN - VOLUME NUMBER
2 LOCAL SUBDOMAIN-FACE NUMBER

Figure 3.4.--Sketch of a node in a cylindrical-coordinate system
with its cell volume, showing the cell faces, the subdomain

volumes, and the subdomain faces.

82



A cartesian-coordinate grid for a region is shown in figure 3.1. Note
that the basic cell is a rectangular prism; thus, region boundaries that are
not parallel to a coordinate axis must be approximated by a staircase-like
pattern of cell boundaries. No provision for boundary faces that are
diagonally oriented to the coordinate axes exists in the present version of
the HST3D code. It can also be seen that the entire simulation region needs
to be contained in a large rectangular prism. The nodal dimensions of this
prism are the maximum number of nodes along the three coordinate axes, Nx’ Ny’
and Nz. Approximation of diagonal boundaries by a staircase-like pattern will
cause a set of cells to be within the large prism that are excluded from the

simulation region. These cells will be referred to as excluded cells.

The method used for spatial discretization is a subdomain weighted-
residual method with approximating functions that are piecewise linear for
the dependent variables. The unknown parameters in the approximating
functions are the nodal values of the dependent variables. The residuals are
the errors in the governing equations that result from using approximating
functions to the exact solutions, and equations for the unknown parameters
require that the average residual over each cell is zero (Crandall, 1956, p.
149; Finlayson, 1972, p. 7-9, 137, 142). The partial-differential equations
are discretized in space by integrating them over each cell volume. Then the
divergence theorem of Gauss (Karamcheti, 1967, p. 73) is used to transform the
volume integrals of the divergence terms into surface integrals of a normal
derivative. The spatial derivatives in the surface integrals are approximated
by central or upstream differences. The volume integrals are approximated
easily, using the mean value theorem of integral calculus, because all fluid
and porous medium properties are assumed to be comnstant throughout the sub-
domain volumes of a cell. For the integral of the time derivative, we assume
that the time derivative evaluated at the node approximates the spatial
average of the derivative over the volume of the cell. Thus, the capacitance-
coefficient matrix of the temporal derivative terms is diagonalized. This
method for spatial discretization is conceptually similar to the integrated-

finite-difference method presented by Narasimhan and Witherspoon (1976).
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The porous-matrix hydraulic, thermal-transport, and solute-transport
properties are discretized on an element basis, with a set of elements forming
a zone of constant properties. The dependent variables that are properties of
the fluid are discretized on a cell basis. Boundary-condition fluxes and

source flow rates also are discretized on a cell basis.

To illustrate the discretization of the flow, heat, and solute equations,
we shall use a general transport equation. The procedure follows that of
Varga (1962, sec. 6.3), Spanier (1967, p. 218-222), Cooley (1974, p. 10-13) or
Roache (1976, p. 23-28) extended to include spatial first-derivative terms, to
three dimensions for cartesian coordinates, and to handling dispersive tensors
that are not necessarily diagonal. The restriction exists that all cell-
boundary planes need to be perpendicular to a coordinate direction. The
general transport equation has the form of a parabolic, partial-differential

equation:

d

__ (ax,t) u(x,t)) = V-B(x,t)Vu(x,t)-V-C(x,t)u(x,t) (3.1.1a)
ot

N
s

+ D(x,t)u(x,t) + 2 E (t)6(x-x ) ;
N N s=1 ° -

where
is the vector of position, (x,y,z), (m);

is the capacitance coefficient (appropriate units);

o > X

is the tensor of diffusion or dispersion of rank 3

(appropriate units);

C is the vector of interstitial velocity (m/s);

D is the source factor for chemical reaction (appropriate units);
E_ is the source~term intensity (appropriate units);
N is the number of source terms;
is the dependent variable (appropriate units); and

6(x-x_) is the delta function for a point source at X=X (-).
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Initial condition is:

_ 0
at t=0;u=u(x); (3.1.1b)
Boundary conditions are:

specified value:

u= uB(g,t), for x on S! ; (3.1.1¢)

specified flux:

-B(x,t) gﬁ + C(x,t)*nu = J(x,t)*n for x on S2 ; | (3.1.1d)
where

uo is the initial distribution of u;

up is the boundary distribution of uj;

3 is the derivative in the direction of the outward normal at the
on

boundary;

Jen is the specified total flux normal to the boundary surface; and
C:n is the advective flux normal to the boundary surface.

3.1.1 Cartesian Coordinates

Integration of equation 3.1.1a over the cell volume associated with a

mesh point, m, at a given location with indices i, j, k, gives:

a e * - -
IV 5% Au dV = IV V+(B*Vu)dv fV V-Cudv (3.1.1.1)
m m m
N
sm
+ IV D udv + Z— fv Eﬁ(g-gs) av
m s=1 m
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where

Vm is the volume of cell m.

Now, using the previously stated assumption about the integral of the time

derivative:

IV g{ Audv = gE fV Audv . (3.1.1.2)
m m

Use of the Gauss divergence theorem on the dispersive and advective

terms yields:

IV V+(B+Vu)dv = IS (BVu) *nds ; (3.1.1.3)
m m

and

fV Ve(Cu)dv = IS (Cu)+nds ; (3.1.1.4)
m m

where
Sm is the boundary of cell m; and

n is the outward unit normal vector to the boundary.

Then equation 3.1.1.1 becomes:

AudvV = fo  [B*Vu - Cu]'ndS + Jy DudVv +
m

9
a3t Sy
m m

fvm Esm) O %) 4V - (3.1.1.5)
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We have consolidated all the line sources within cell m into a single
equivalent line source, thus eliminating the summation. Since considerable
arbitrariness exists in selecting the finite-difference approximation of
equation 3.1.1.5, we shall choose finite differences that preserve the con-

servation of u for each cell.

Following Varga, 1962, p. 253, or Cooley, 1974, p. 16, we approximate the

rate of change of u in the cell using the mean-value theorem giving:

g’f Jy AudV = 2 (u(x_,t) [y adV) ; (3.1.1.6)
m

where

X is the vector of the node point location (m).

This approximation diagonalizes the coefficient matrix of the temporal-
derivative terms. The value of the dependent variable at the node is taken to
represent the average value over the cell. Now each cell may consist of up to
eight subdomains, as shown in figure 3.3, and each subdomain may have
different spatial properties. Thus, the integral of A in equation 3.1.1.6 is

actually:

8
Adv = 2 A V (3.1.1.7)

I Moo
—
<

where
Ams is the value of A in subdomain s of cell m; and

Vms is the volume of subdomain s of cell m (m3).
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The dispersive-flux term is approximated, recognizing that the surface of

cell m is composed of six faces, and that each face belongs to four elements,

each of which may have different spatial properties (fig. 3.3). Thus:

6 4
fs (B*Vu)*'ndS = X 2 IS (B*Vu) *ndS ; (3.1.1.8)
m p=1 g=1 mpq

where

Smpq is the part of the cell surface that belongs to face p in element
q (m?).

A typical integral over a cell face is of the form, for p = 2, as an

example:

4
Jg (BVu)nds = 3 fo [B
m2 q=1 “m2q

Ju du Su )
XX 5; + BXY ay + sz 3_z]ds ) (3-1.1.9)

where
Bij(t) are the tensor components of B for a face whose outward

normal points in the ith direction, i=x,y, or z.

A sample subdomain volume for subdomain s=1 in figure 3.3 is:

Vis ok (xex, ) % (Yj‘Yj-1) % (2,72, ) (3.1.1.10)
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A sample cell-face area belonging to face p=2 and zone q=1 in figure 3.3

is:

Sma1 = & (95-

37Y5-1 % ()

(3.1.1.11)

Equation 3.1.1.9 is based on the fact that each cell face has a normal vector
that is alined with one of the cartesian-coordinate directions. Note that Bij
is assumed to be spatially constant over the element q. The partial
derivatives are approximated by central differences across each face. Thus,
for the face midway between X and x, denoted by p=2, the outward normal is

i+1’
in the positive x-direction. An integral over this cell face becomes:

4
- du Bu
IS (B-V)-ndS = E [Bxx(q)ax i+%, 3,k Sm2q+ Bxy(q)ay qstq
m2 q=1
+B (q)§E S .1 (3.1.1.12)
xz *’9z| q m2q '’
where
du is the gradient of u in the x-direction across the p=2
x| i+k%,j,k face at yj, z) 5
du is the gradient of u in the y-direction for the subface
9yl q in the qth element; and
du is the gradient of u in the z-direction for the subface
9z| q in the qth element.
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Now

u, . -u, .
Quj . oz Athik 1,0,k (3.1.1.13)
x| i+k,j,k X4 " ¥
where
ui,j,k is the value of u at node X:s yj, z, .

The approximation for g% depends on q. For example, for the element

bounded by the planes at x, and X471 yj and yj+1; and z and Zi41 )

denoted by p=2, q=4 in figure 3.3, we have:

du » itk i1k T Yieh ok, (3.1.1.14)
9yl g=4 Vi1 = Y;
where
Uieg, i,k - Hia 50t L K0 (3.1.1.15)
Similarly,
du o itk kel T Yied § ok (3.1.1.16)
9z| q=4 - z -z ) U
k+1 k

The advective-transport term is treated in a similar fashion, but it is

somewhat simpler. First, we break it into a sum over the faces and zomnes:

6
 z Jg (Cu)wnds. (3.1.1.17)

Jo (Cu)+ndS =
Sy = - -
m 1 g=1 “mpq
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A typical integral over a cell face, p=2, is:

4
(Cu)*ndS = 2z | C uds ; (3.1.1.18)
- = S X

IS
m2 =1 "m2q

where
Cx is the vector component of C for a face whose outward normal points

in the x-direction.

Now if the integral is approximated, for the same example face as above,
p=2, by:

4
IS CxudS 3 Cx(m,z,q)a (u
m2 q=1

i+1,7,k + ui,j,k)SmZQ ; (3.1.1.19)

where Cx (m,2,q) is the value of Cx on the face p=2 in element q.

This will lead to a central difference for the advective term of equation

3.1.1.5. If, instead, the following approximation is used:

4
fsmzcxuds = qil Cx(m,Z,q) ui,j,kSqu’ for Cx >0 (3.1.1.20a)
or
4
o qil Cx(m,z,q) ui+1,j,ksm2q’ for Cx <0 ; (3.1.1.20b)

this will lead to an upstream difference for the advective term. Central

differencing may produce oscillations in the solution, whereas upstream
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differencing cannot (Price and others, 1966; Roache 1976, p. 161-165). But
the penalty to eliminate oscillation resulting from spatial differencing is
the addition of artificial dispersion (Roache, 1976, p. 64-66; Lantz, 1970),
which can be regarded as smearing out of steep concentration or temperature
gradients caused by the numerical method rather than the dispersive mixing

term.

An approximation has the transportive property, if a disturbance in the
field of property u, is advected only in the direction of the velocity.
Recall that C represents the velocity in these equations. The central approx-
imation of equation 3.1.1.19 does not have the transportive property, whereas
the upstream approximation of equations 3.1.1.20a and 3.1.1.20b does. How-
ever, not all upstream approximations have the transportive property (Roache,
1976, p. 69). While the transportive property is desirable on physical
grounds, the grid spacing must be limited to avoid excessive artificial
dispersion caused by the numerical method. The criteria for avoidance will be
presented in a later section. The numerical implementation of the heat- and
solute-transport simulator offers the choice of central or upstream differenc-
ing for the advective terms. If upstream differencing is selected, the user
must determine the grid spacing that limits numerical dispersion to an

acceptable amount.

The source term in equation 3.1.1.5 that is linearly proportional to the
value of the dependent variable, u, is averaged throughout the cell volume to
obtain the finite-difference approximation. The mean-value theorem is used to
approximate the integral, with X being the node-point location. The volume

integral is split into the contributions from the eight subdomains. Thus:

8
IV Du dv u(gm,t) E IV D(s)dv ; (3.1.1.21a)
m s=1 's

IR

) (3.1.1.21b)

R
=

i,j,k Dmsvms
1,3, s=1
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where

Dms is the value of D in subdomain s of cell m.

The source term at the end of equation 3.1.1.5 is assumed to be a line
source in the z-direction of constant intensity, that fully penetrates the
cell at X=X 5 Y=Y Discretization is achieved by carrying out the

integration. Thus:
fv Esmﬁ(x-xs)é(y-ys)dv = Em . (3.1.1.22)

This shows that a line source becomes distributed throughout the cell volume,

and the precise location is lost in the finite-difference equation.

Combining equations 3.1.1.6 through 3.1.1.22 gives the finite-difference

approximation to equation 3.1.1.1a for an interior node or cell. It is of the

form:
= +
3 (ezaby 50 = 219 5e1,ke1 T %2 % ge1ke1 T 28 Yae, o1,k
+ + +
34 %5_1,5,k-1 7 25 Y% j k-1 " 26 Y41 5 k-1
+ + +
37 Yi.1,i+1,k-1 © 28 U4 j+1 k-1 7 29 Yi+1,j+1,k-1
+ + +
210 Y5951,k © 211 % o1k T 212 By -1,k
+ + +
213 Bio1,5,k T 7 Y5k T 215 By 5k
+ + +
316 Yy_7 j+1,k 217 Y5 541,k T 218 Yi41 541,k
+ ajg u, + agq u,

i-1,j-1,k+1 T 220 %4 501 k41 i+1,j-1,k+1

+ +
T a2z Wyg kel T 223 Y5 5ope1 224 Yyug g kel
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+ ags u. age U,

+
i-1,541,k+1 i,j+1,k+1 T 227 0

i+1,j+1,k+1 ‘

+a . (3.1.1.23)

It is important to observe that the dependent variable for each interior
node is related to 26 other nodal values of that variable, through the finite-
difference equation in space. The six nearest neighbors to a given node
appear in the terms with coefficients ag, a;;, a3, ais, ay7, and azs. The
central node is in the term with a;4. All of the other terms result from the
cross-dispersive flux integrals of equations 3.1.1.8 and 3.1.1.9. Thus it
will be advantageous to reduce the bandwidth of the final finite-difference
equations by treating the cross-derivative dispersive-flux terms in an

approximate manner. This will be covered in section 3.2.

Boundary cells with specified flux are handled similarly to interior
cells. With the point-distributed grid, nodes will be located on boundary

faces, edges, and corners. The cells associated with these boundary nodes

will not have all eight subdomains (fig. 3.5). For example, a lateral
boundary cell will have only four subdomains, while a corner boundary cell
will have only one. The volume integrations over the cell are carried out as
before, with the appropriate reduction in the number of subdomains. Flux-
boundary conditions enter the finite-difference approximations through the

surface integrations.

Consider a side node where part of the regional boundary is an x-plane;
that is, the outward normal to the regional-boundary surface points in the
positive x-direction. The associated half-cell for the node consists of four
subdomains shown in figure 3.5. The discretization of equation 3.1.1.5

proceeds as follows. The temporal term for the rate-of-change-of-u becomes:

4

8 . 2 AV .
i,j,k g=1 s ms

5t fV AudV ¥ —u (3.1.1.24)
m
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The dispersive- and advective-flux terms are still given by equations
3.1.1.8 and 3.1.1.17, but now one of the faces, denoted by p=2 in figure 3.5,
is a boundary face for the region. Note that its outward normal points in the
positive x-direction. Using equation 3.1.1.1d for the flux-boundary

condition, the integral over this face becomes:

J [B:Vu-Cu] °ndS = - | J-ndS ; (3.1.1.25a)
S = =7 = S ., — -
m2 m2
4
= - E quSqu 3 (3.1.1.25b)

q=1

where

qu is the component of vector J in the x-direction in the qth
element.

Normally Jx is constant over the entire cell face. Thus, the
specified-flux boundary conditions has been incorporated in the finite-

difference equation as a source term.

The distributed-source and line-source terms simply are adjusted to
account for the reduced cell volume. Thus equation 3.1.1.22 is unchanged, but

equation 3.1.1.21b becomes:

IV DudV £ u,

4
2 DV . (3.1.1.26)
m -
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Figure 3.5.--Sketch of a boundary node with its half-cell volume

showing the cell faces and the subdomain volumes.
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In the flow equation, there is no advective term to cancel the
corresponding term in the specified-flux boundary-condition equation. Inside
the region, this means C = 0; but some of the boundary conditions have C # 0.

Then equation 3.1.1.9 takes the form:

fS (B*Vu) °ndS = fS [(cu)+n - J-n]dS ; (3.1.1.27a)
m2 m2

which discretizes to:

IR
M

fg  (BVu)-nds [c

-J._S 1. (3.1.1.27b)
m2 q=1 x4 q

u, . .S
x1i,j,kq

No central or upstream approximation for u is necessary, because the

boundary face contains the node point.

3.1.2 Cylindrical Coordinates

The discretization of equation 3.1.1a in cylindrical coordinates is
analogous to what has just been presented. We make the assumption of
cylindrical symmetry, so no angular dependence exists. No line source terms
can be present so E=0. A cell volume becomes a ring bounded by ri_% and ri+52
and zk_sé and zk+%, where ri+% is the radius of the cell wall between r, and
i (fig. 3.4).

An option is provided for automatic placement of the radial-grid lines
between the interior and exterior radius. With this option the grid lines are

spaced according to:

Fiag rNr 1/(Nr-1)
- | ¢ . (3.1.2.1)
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where
Nr is the number of grid points (lines) in the radial direction;
rNr is the exterior radius (m); and

r, is the interior radius (m).

This equation gives logarithmic-node spacing in the radial direction.
The cell boundaries for the cylindrical faces are chosen to be at the log-

arithmic mean radii; for example:

Tier 7 T4
X, ,, = prr—————— (3.1.2.2)
ith 2n(ri+1/ri)

for both the automatic and user-specified radial-grid distribution. A loga-
rithmic-grid spacing will make the pressure drop uniform between adjacent grid
points for steady radial flow in a homogenous medium (Aziz and Settari, 1979,

p- 88). The discharge flux at r, 3 matches the analytical solution under

+
these conditions.

Each cell ring is composed of four subdomain rings (shown in fig. 3.5).

Thus, the temporal rate-of-change of u in the cell is approximated by:

4

u, XAV (3.1.2.3)

]
Audv 3t 2
s=1

1}

9
5t Jv
m

where a sample subdomain volume is, for subdomain s=1:

Vi = (2 - ri_%) % (z -z, y) - (3.1.2.4)

The surface of cell m is composed for four faces, and each face belongs
to two elements. Each element in the z-direction may have different porous-

medium properties, but these properties must be constant in the r-direction.
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Equation 3.1.1.8 for the dispersive-flux term becomes:

4 2
fS (B*Vu)+ndS = 2 X2 IS (B:Vu) *ndsS ; (3.1.2.5)
m p=1 ¢=1 “mpq

and typical integral over a face of a cell surface, p=2, is

2
fg (®Vu)mds = : fg
m2 q=1 “m2q

du + B du

[Brr Sr rz 9z

1ds ; (3.1.2.6a)

2
= 3
g=1

du ou
(B, (D5 |43,k Smaq * Brz(V5z|q Smaq - (3-1:2-6b)

Equation 3.1.1.13, with r taking the place of x, is used to approximate

du

dJu , and equations 3.1.1.14 and 3.1.1.15 are used to approximate Jdu
or

ith,k dzlq

Representative cell face areas are, for the face p=1:

Sm11 = 2n ri_;;g(zk - zk—l) ; (3.1.2.7)

and, for the face p=3:

- 2 . 2 .
Sm31 n(ri ri_32 ) (3.1.2.8a)
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= 2 ., 2
Sm32 T[(ri+!2 r, ) . (3.1.2.8b)
The advective term is treated as in the cartesian-coordinate case, with
appropriate reduction in the number of faces and zones. Again, central or
upstream differencing in space can be selected. The distributed source term
proportional to u is also handled as in equations 3.1.1.21a and 3.1.1.21b with

appropriate reduction in the number of subdomains from eight to four.

Finally, the finite-difference approximation to equation 3.1.1.1la for

cylindrical coordinates with angular symmetry takes the form:

3 ) . ) )
— - +
5t (B10°Y; ) T aruy g g YAz gt asu L, g
. . Y -
Tas g T A8 Y kT 26 Uik
) Y - )
+ aq Uip kel T 28 Y ey + ag Uil k4" (3.1.2.9)

Note that no ap” term exists because annular-ring sources normally are
not encountered. The terms a , a4 , ag , and ag are contributions from the
closest neighbors to the central node point appearing in the ag  term. The
other terms arise from the cross-derivative dispersive-flux integrals, and
they may be treated in an approximate fashion to reduce the matrix-band
width. The specified-flux boundary conditions are discretized in the same
manner as for the cartesian-coordinate system, with appropriate reduction in

the number of subdomains and surface faces.

3.1.3 Temporal Discretization
To approximate the time derivative, two options are offered. The first

is centered-in-time differencing, commonly known as the Crank-Nicholson

method. The time derivative is approximated by the finite difference:
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at (amum) = o+l = H (3.1.3.1)

where tn is the time at level n.

The right-hand-side, F, of the equation concerned is evaluated as

follows:

n+l

F 2 5F7 + ) ; (3.1.3.2)

where

F® is the spatial-difference function evaluated at time n.
The other option is backward-in-time differencing, which has the form:

F = pt! (3.1.3.3)

As with the advective spatial differencing, central-in-time differencing
has the potential for causing oscillations in the solution (Price and others,
1966; Smith and others, 1977), whereas backwards-in-time differ-encing does
not. However, backwards-in-time differencing does introduce numerical dis-
persion that must be kept under control by limiting the time-step size (Lantz,

1970; Price and others, 1966; Smith and others, 1977; Briggs and Dixon, 1968).

Equations 3.1.3.1 through 3.1.3.3 for the time discretization can be

combined into a general form as:
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(aguy)™ " - (agu)®

+
tn 1 _ tn

= oF**! + (1-8)F%; (3.1.3.4)

where 6 = 1 gives the fully implicit or backward-in-time (BT) differencing,
and 0

% gives the Crank-Nicholson or centered-in-time (CT) differencing.

The next step is to express the difference equation in residual form by

writing:

o+l o 6u ; (3.1.3.5)

=
|

=
+

where

Su is the temporal change in u.

Equation 3.1.3.5 is inserted in equation 3.1.3.4 and the following ex-
pansions of the temporal-difference terms are used. These are consistent
differencing expansions that correspond to the differentials of products. For

terms of the form (aiu)n+1 we have:

(aiu)n+1 - (aiu)n = ain+16u + unéai 5 (3.1.3.6)

for terms of the form (aiaju)n+1, we have:

n+l ntl n+l ntl n
. a. Su .

+ a u"8a.+ aTu"ba,. (3.1.3.7)
J J 1

(aia.u)

n
- (a,a,u) = a
J ¢ 1] y

3.1.4 Finite-Difference Flow and Transport Equations
Combining equations 3.1.3.4, 3.1.3.6, and 3.1.3.7 with 3.1.1.23 or

3.1.2.9, we obtain the form of the general finite-difference equation for an

interior node. The rather large number of terms makes presentation of the
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general equation impractical. It is more instructive to present the dis-
cretized flow, and heat and solute-transport equations individually, showing
the x-direction terms only. The additional dispersive and convective terms
for the y and z-directions follow the same pattern as their counterparts inA

the x-direction.

The finite-difference approximation to the flow equation (2.3.1a) is, for

an interior node m:

C336pm + C326Tm + C316Wm = GTFD% (6p1+1 - 6pi) - GTFl_%(Gpi - 6pi'1)

n n n
tTriag(Piay T Pyt Pip® Xy - X))

n

n n
" Tpiy(Py TPy T P8 (X - x0))

n
+ sz* + 9—53 p* 8p,

+ y and z direction difference terms; (3.1.4.1a)

where
c [pPt! g v+ g By o )/6t ; (3.1.4.1b)
33 = 1Py < %s's pon “ & Vms ’ TheT

s=1 s=1
8 n

Cap = [pOBT 21 &g Vms]/Gt 5 (3.1.4.1c)
s=
8 n

Cay = [poB )3 e Vms]/Gt ; (3.1.4.14d)
s=1
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N 4
T, = Piry 5 k.S, (3.1.4.1e)
Fi+y n —. m2q m2q ’ e
My, (540755 @71
Py 4
Teiy = o 2 Ki1oSmiq (3.1.4.1f)
My (%57%5) @71
where
Cij are the capacitance factors (various);
TFi are the conductance terms for flow (m-s); and
n
Qm is the volumetric source flow rate for cell m (m3/s).
The flow-conductance factors, ¥Fi’ (m3®), are defined as:
o 4
TF].__H2 = qzl kaquZq / (xi+1-xi). (3.1.4.2)

These factors contain the spatial information and are constants.

In equation 3.1.4.1a, the source-sink flow rate has been made
semi~implicit in time by including a term that accounts for changes in flow
rate with changes in cell pressure. It is semi-implicit, because only the
flow rate that contributes to the equation for cell m is treated implicitly.
The effect of a change in pressure in cell m on the source-sink flow rates for
other cells coupled to the cell through a well bore are not included; this
approach avoids enlarging the bandwidth of the system equation matrix,

equation 3.6.1a.
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The finite-difference approximation to the heat-transport equation
. (2.3.1b) is, for an interior node, m:

C230p, *+ Co28T_ + Cp1dw = (8T, ,-8T.) - (8T,-6T,_.)

Thi + i-%

n n n n
Taiag (TiaT3) ~ Ty (T37T5 )

+

n+l
xi+h ch Ti+% ~ 665 fTrH2

6s

n+l n
xi-L cfﬁ Ti_;2 + eﬁsxi-% chi_}2

+
<
n

n
xi+y Of Tisy * Sxioy O Tiy

n n
. * Ty ity Tiwn, e,k T Ti501,k 7 Tivn,g-1,k - Ti,j-1,K0

n n
+ - -
bxz ity (Tiel,i,kt1 ¥ Ti,j k01~ Tit1,i,k-1 ~ Ti,j,k-1

n n n n
ey i-% (i,j+1,k * Ti-1,5+1,k ~ Ti,§-1,k ~ Ti-1,j-1,K

n n n n
+ - -
axz i-% Ti,j,k+1 T Ti-1,5,ke1 Ti5,k-1 Ti-l,j,k-l)
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aQ™
* o+ *
bt e o g e, T2 ¢ ol o)

In

9Q

m ¥
—_— %
op Cfﬁpm 6Tm

+ y and z direction dispersive, cross-dispersive

and advective flux terms;

where
8 8
Cos = [p B HEY: e v 4?5 4 v
o'pm S S m m - bs ms
s=1 s=1
8
n+l .
- Tm E (pscs)s absts]/Gt i
s=1
Co2 = [pPM ¢ 3 Ny o+ 3 (1-e(p c ) V
22 pm f s=1 s s=1 s ps s’s ms
n 8 n
poﬁTHm 2 8s Vms]/6t 3
s=1
n 8 n
C21 = [poﬁwﬂm z s Vms]/6t »

s=1
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(3.1.4.3d)




_ n n
THi+% - [qil 8q DHxx(z’q)Squ * Kf qil 8q Sm2q *
4 n
q51(1-8q)quSm2q]/(xi+1-xi) ;
4 n 4 n
THi-% = [q§18q DHxx(l’q)Smlq * Kf q§18q Smlq
4 n
q51(1-€q)quSm1q]/(xi-xi_l) ;
n _ n n
sxi+% (pvx)i+% 21 8q Sm2q i
n 4 n
Sxi-% = (pvx)i-% qil 8q Smlq ’
n 4 n
Gsxi+% = pi+5 6vxi+32 qil 8q Sm2q ’
n 4 n
6sxi-lg = Pi-y vai-% qzl £q Smlq b

4

4

Dny(Z,q)szq]/(yj+1-yj) ;
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(3.1.4.3k)



4

—-— n - .
Tsz ity [qil eq Dsz(z’q)Squ]/(zk+1 zk) ) (3.1.4.32)

H = H(ToH) + £ (T—TOH); (3.1.4.3m)

where THi are the thermal conductance terms (W/°C).

In equation 3.1.4.3a, the same semi-implicit treatment of the source-sink

flow rate has been incorporated as in equation 3.1.4.1a.

The central-or upstream-weighted value for the variables Voo va, T and

6T is given by the general form:

ui+% = (1-0) u, + 0 ug (3.1.4.4)

where

O is the spatial weighting coefficient.

Central weighting is obtained with 0 = %; upstream weighting is obtained with

0 = 0 for a positive Ve

The finite-difference approximation to the solute-transport equation

(2.3.1c) is, for an interior node, m:
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C136pm + C126Tm + Cllawm = 6Tsi+%(6wi+1 - 5W1) - BTSi_,? (ﬁwi-éwi_l)

* Toiay (ag7vD) - Tgyp (05-vh )
-Bsgzi% 6Wi+% - 655x1+gwg+g
+6$2-i+1!2 (Swi_}2 + 0 (‘S.‘Sx].._zéwr.::_;2

) S:{li+3§ w;l"';g * sgi-a wg-!g

+ n

n
+
Tsz itk (

n
Tsxy i-% i, j+1,k *

n

- At Wt
m m

+

n ., .n
Q, pFWE + 8
aQ™

m
%%

n
Tsxy i+5Vi+1,j+1,k *

- Gh(wm

n

Yiel,i,k+1 T Vi, kel

n

n

+
Tsxz i-% (wi,j,k+1 Yi-1,3j,k+1

L oSy sw )
m m m

n

m KR ¢}
PP

6p,, 8(pHwh)

T Yi,i,k-1

n

Yi,j*1,k ~ Yi+1,5-1,k

n

T Yi+1,3,k-1

n

n

+6Q S(prwk)

W )
i,j-1,k

- Wt )
i,j,k-1

" )

Yi-1,j+1,k ~ Yi,j-1,k ~ Yi-1,j-1,k

" )

T ¥i-1,j,k-1

+ y and z direction dispersive, cross-dispersive and

advective-flux terms;
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where

Ci3 = [p B B SRy 4l g v_1/6t (3
13 = IPPp ¥y 2 R ¥ m m 2 %s'ms '
s=1 s=1
n 8
Ciz = [p By wo Z K. V_1/6t ; (3
s=1
Ci1 = [ By et gK“ vV /6t 3
11 = lp Bw, P g=] S ms ’ ’
4 4 o7
..., =[3e*D, (2,q)S., +D 3 ets ity (3.
Sith [q=1 q Sxx( @) m2q mq=18q m2q] X 0175 (
[gnn (1,9)S gns ]plil';2 (
T.. ,=1[3¢ 1,q +D I 22 . (.
Si-% ¢=1 q Sxx mlqg m_; 49 mlq X,°X.
4 Pt
+%
L.=013e b (2,908 , 1 =2 — 3.
Sxy itk =1 Sxy m2q yj +1 yj
4 Py
+%
., =[3z¢&® D (2,9}, 1 22— ; (3.
Sxz itk =1 Sxz m2q Z 417 %k ’
Wo=pl KV ; (3.
s=1
8
_ .n+l
6Mm = Py E 0Ibsvs(Spm
s=1
8
* Sil(xz Vs)[ponapm * poBTGTm * ponﬁwm] ; .
— n .
szl - sS + (pbKd)s ’ (3.

where
Mﬁ is the mass of fluid plus the effective additional fluid
mass from sorption in cell m at time level n (kg);
T_.. are the conductance terms for solute transport (kg/s); and

Si
Ks is the augmented porosity factor for subdomain s(-).

110

.5b)

.5¢)

.5d)

.5e)

.51)

.5g)

.5h)

.51)

-53)

.5k)




In equation 3.1.4.5a, the same semi-implicit treatment of the source-sink
flow rate has been incorporated as in equation 3.1.4.la. In equations
3.1.4.1a-f, 3.1.4.3a-£, and 3.1.4.5a-k, subscripts pertaining to the y and =z
directions have been omitted for clarity, unless necessary. The source den-
sity, p*, temperature, T*, and mass fraction, w*, are specified functions of
time and source location. When the source-flow rate is negative, so that it
becomes a sink, the density, temperature, and mass fraction become those of
the cell. In the abbreviated subscript notation, u and u, become identical
for a given variable, u. Note that the cross-dispersive flux terms have been
evaluated explicitly, that is, at time n, to limit the number of elements in
the coefficient matrix of the unknowns, A, to a maximum of seven for each

equation. The coefficients Ti’ Si, and Mi are evaluated at time n.

The preceding flow and transport equations are valid for confined flow.
The forms of the capacitance terms that contain the porous-medium bulk com-
pressibility are based on a slightly compressible porous matrix and a cell
volume that deforms slightly in space. The coefficients Cij’ and the cell
facial areas Smpq are modified for the case of unconfined flow, as will be

shown in section 3.4.6.

The permeability tensor in the flow equation is a diagonal matrix in the
numerical implementation, because the coordinate directions are chosen to be
along the principal directions of this tensor. These directions are assumed
not to change with position in the simulation region. The finite-element
discretization technique must be used for the more general situation of

spatially variable, anisotropic, permeability directions.

In summary, the properties and variables that are spatially discretized
on a cell-by-cell basis include pressure, temperature, solute-mass fraction,
density, viscosity, enthalpy, and specified fluxes. Porous-matrix properties
that are discretized on an element-by-element or zonal basis include porosity,
permeability, thermal conductivity, heat capacity, bulk compressibility, bulk
density, equilibrium-distribution coefficient, longitudinal dispersivity, and
transverse dispersivity. Well-completion intervals also are designated on a

zonal basis.
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3.1.5 Numerical Dispersion and Oscillation Criteria

For guidance in selecting the spatial and temporal discretization method,
the following results have been obtained by Lantz (1970), Roache (1976, p. 19,
48), Smith and others (1977) and Price and others (1966), expressing the
truncation errors that give rise to numerical dispersion and criteria for
avoiding oscillations in the solution. They were derived for the one-
dimensional form of equation 3.1.la with constant coefficients and no source

terms; that is:

du _ _ 9% Ju
A 5% - B %2 (o] 3% ° (3.1.5.1)

Similar analyses can be performed for the more general equation:

u_ 2
dt ~ 3¥«x

where B, C, D, and E are functions of x and t, and A is positive.

The truncation errors and oscillation criteria for both equation forms
are given in table 3.1. The maximum values of A, B, and C should be used in
the variable coefficient case, equation 3.1.5.2. All of the methods are
stable in the sense that errors do not grow without bound. However, oscil-
lations in space and time may persist without growth or decay. The oscil-
lation criterion for the centered-in-time differencing was presented by Keller
(1960, p. 140) and Briggs and Dixon (1968). They are sufficient conditions;
thus, they may be conservative. Alternate conditions appear in Price and
others (1966) but they require knowledge of the maximum or minimum eigenvalue
of the spatial-discretization matrix that cannot be expressed analytically.
An important thing to note from table 3.1 is that it is possible for oscil-
lations in the solution to arise from both spatial and temporal discreti-
zation. For the flow equation with no advective term, oscillations from

temporal discretization are still possible. For the flow equation in
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cylindrical coordinates, an advective-type term appears so oscillations can
also be caused by spatial discretization. If a source term that depends on u
appears in equation 3.1.5.2, the oscillation criteria for the centered-in-time

discretization are modified as shown.

When using the backwards-in-space (upstream) or backward-in-time differ-
encing, one needs to check that the truncation-error terms that cause
numerical dispersion do not become large relative to the physical-dispersion
coefficient. Mathematically, for a dispersion coefficient given by equation

2.2.6.1.2; one needs to adhere to the following criteria:

Ax
— << a ’ (3.1.5.3)
2
and
cot .
> << aL ; (3.1.5.4)
where
Ax = Xip1 " X and (3.1.5.5a)
6t = t71 - P (3.1.5.5b)

Note that these results are from a one-dimensional analysis with constant
coefficients, but they give guidance for grid and time-step selection. Table
3.1 shows that, in the case of variable coefficients, additional truncation-
error terms occur with backwards-in-time differencing, that can give rise to

numerical-dispersion errors.
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Table 3.1.--Truncation errors and oscillation criteria for one-
dimensional parabolic equations
[BS, backward-in-space; BT, backward-in-time; CS, centered-in-space;

CT, centered-in-time;
u =azu°u =§2 ]
XX 9x2 * 'x  9x °

Discretization Truncation Oscillation
Method Error Criterion

Equation 3.1.5.1

BS CAxu -——
— XX
2
BT C2Atu -
—2 XX
cs 0(ax2) Ax < %—
At A
2 a
CT 0(At2) w52 < B
Equation 3.1.5.2
BS CAxu -
— XX
2
2 -
BI CoAtu o + B Atu  + BDu
2 t XX XX
+ 3B Cu__ + 2B2 qu
X XX X XX
cs 0(Ax2) Ax < 2B
= |cl
cT 0(At2) At<MIN (—2—— 2 ):ps0
- B _D ,D7
2 2
or
At< 1 : D<O
= "B p =
Ax2” 2!
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3.1.6 Automatic Time-Step Algorithm

Manual time-step selection can be difficult, when many source terms and
boundary conditions change considerably with time. In general, the more
rapidly the conditions change, the smaller the time steps will need to be for
an accurate solution. Therefore, the heat- and solute-transport simulator has
an automatic time-step option that uses an empirical algorithm (INTERCOMP
Resource Development and Engineering, Inc., 1976). The user specifies the
maximum values of change in pressure, temperature, and mass fraction
considered acceptable as well as the maximum and minimum time step allowed.
Then, at the beginning of each time step, the following adjustments are made,

depending on the conditions:

su®
. s max
: ; Ot = + = ) ;
if |6umax|>6umax ; Ot §6t0(1 Bu_ ) (3.1.4.1)
max
otherwise, if:
s Gu;ax
; = +0.8 —— ) ;
0<|6umax| < Gumax ; Ot 6t0(0.2 0.8 5u_ | ) (3.1.4.2)
max
otherwise, if:
6u = 0; 6t = 1.56t_; (3.1.4.3)
max o
where
u is pressure, temperature, or mass fraction;
Gu;ax is the specified maximum change in u;
6t is the new time step;
Gto is the previous time step; and
| 6u | is the absolute value of the maximum-calculated change in u over the

max

previous time step.
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The new time step is selected to be the minimum of the three that were
calculated on the basis of change in the pressure, temperature, and mass
fraction. The time step is constrained to a user-specified range, and the
maximum increase in 6t is limited to a factor of 1.5. This algorithm tends to
increase the time step such that the maximum acceptable change in pressure,
temperature, or mass fraction is achieved as the simulation progresses. The
minimum required time step, set by the user, is maintained for the first two
steps after boundary-condition changes occur or after the automatic time-step

algorithm is invoked.

3.1.7 Discretization Guidelines

No complete set of discretization rules exists that will guarantee an
accurate solution discretization with a minimum number of nodes and time
steps, even for the case of constant coefficients. However, the following

empirical guidelines should be useful.

1. If using the backward-in-space or backward-in-time differencing,
make some estimates of the truncation error, using parameter
values at their limits expected for the simulation. Thus,
verify that the grid-spacing and time-step selection do

not introduce excessive numerical dispersion.

2. 1If using centered-in-space and centered-in-time differencing,
print results every time step for a short simulation
period, 5-10 time steps. Examine the results for spatial
and temporal oscillations that are caused by the time or

space discretization being too coarse.

3. Check on spatial-discretization error by refining the mesh.
However, this often is impractical for large regions. A
check on temporal-discretization error is relatively easy to

make by refining the time-step length for a short simulation.
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3.2

4. At each change of boundary condition or source flow rates, reduce the
time step until the abrupt changes have had time to propagate

into the region. The automatic time-step algorithm does this.

5. To adequately represent a sharp solute-concentration or tempera-
| ture front, span it with at least 4-5 nodes. A large number of
nodes may be required if a sharp front moves through much of the
region over the simulation time. Compromises often will have
to be made. An advantage of the centered-in-space differencing
is that oscillations will reveal when the grid is too coarse

relative to the gradients of solute concentration or temperature.

6. Well flows that highly stress the aquifer require a small time
step after a change in flow rate, to control errors from explicit

flow-rate allocation or explicit well-datum pressure calculation.
7. Sometimes, the global-balance summary table will indicate that the
time step is too large by exhibiting large residuals, particularly
if the density and viscosity variations are large.
8. To check for unusual results that could indicate discretization
error, print out all of the results some of the time, and
some of the results all of the time.

PROPERTY FUNCTIONS AND TRANSPORT COEFFICIENTS

Numerical implementation of the fluid-density function is simply the

evaluation of equation 2.2.1.1b or 2.2.1.3a. Fluid viscosity is obtained by

evaluation of equation 2.2.2.1 and equation 2.2.2.2 if necessary. The

enthalpy of pure water at the selected reference values of pressure and

temperature, H(pOH,TOH,O) is obtained by a two-step interpolation. First, the

enthalpy of saturated fluid at the given temperature is calculated by linear

interpolation in the table of saturated enthalpy as a function of temperature;

then, adjustment to the given pressure is made by bilinear interpolation in
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the table of enthalpy deviation from saturation as a function of pressure and
temperature. This procedure is given by equation 2.2.3.l1a. A sequential
search is made for each interpolation, since the number of pressure or
temperature entries is 32 or less in both tables. Equation 2.2.3.1c is used
for all subsequent fluid-enthalpy calculations. It is possible that
simulation of wide variations in pressure and temperature could require a
table look-up for all enthalpy calculations, and the algorithm in the program

code would need to be modified.

- Mmoo (2)

Vy =% (V) +W)
~

- 2 ~

Vz=%{Vz +Vz) CELL BOUNDARY 7/\\\

~
~

@
NODE N

. A ——

Figure 3.6.--Sketch of velocity vectors used for the dispersion-

coefficient calculation for a given cell.
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The hydrodynamic-dispersion coefficient is calculated by equation
2.2.6.1.1 with equations 2.2.6.1.2 and 2.2.6.1.3. A separate value of
Dsij(p’q) is associated with each element, q, of each cell face, p. Inter-
stitial velocities are obtained from the pressure and elevation differences
across the face for the velocities normal to the face. Velocities parallel to
the face are determined by averaging velocities from each side of the face.

An x-face, with the y and z velocities interpolated to get the effective
values on the subface appears in figure 3.6. Average values are used, since
the face lies midway between X, and X410

The thermo-hydrodynamic-dispersion tensor is calculated by equations
2.2.6.2.1 and 2.2.6.2.2. The porosity and the thermal conductivities are
defined by zones and the interstitial velocities are obtained the same as for

the hydrodynamic dispersion.

Two methods are available in the HST3D simulator for computation of the
cross-derivative dispersive-flux terms. The most rigorous treatment of the
cross-derivative terms involves explicit calculation. They are lagged one
iteration in the solution cycle of the flow, heat, and solute equations. The
cross-derivative dispersive fluxes are recalculated for each iteration based
on the conditions existing at the end of the previous iteration and then they
are incorporated into the right-hand-side vector. Therefore at least two
iterations in the solution cycle are required at each time step. This full
treatment requires storage of the nine dispersion-coefficient terms for
thermal and solute dispersion. An approximate empirical treatment of the
cross-derivative dispersion terms is available also, that consists of lumping
the cross-derivative dispersion coefficients into the diagonal dispersion-
coefficient terms. The three augmented dispersion coefficients for thermal
and solute dispersion are the only coefficients stored, and extra iterations
are not required, because the cross-derivative dispersive fluxes are not

computed.
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3.3 SOURCE OR SINK TERMS--THE WELL MODEL

In the present version of the HST3D program, only one well can exist in a
particular cell. Multiple wells in a cell must be represented by an
equivalent single well, or the spatial grid must be refined to separate them.
This restriction includes wells that are located in the same areal cell that

are completed in different vertical intervals.

Recall that a cell may contain up to four zones of different porous-media
properties over a given areal plane. If a well is completed in a cell with
multiple zones, the effective ambient permeability is taken to be that of the
lowest zone number. This is because no algorithm presently exists to
calculate the effective ambient permeability for a well in areally

heterogeneous porous media.

3.3.1 The Well-Bore Model

The volumetric flow rate per unit length of well bore is given by
equation 2.4.1.1. Discretization for a given cell, m, is achieved by choosing
the average pressure to be the cell pressure, and multiplying by the length of
well bore in that cell. Since the well bore is usually screened over the more
permeable zones of the formation region, the screened intervals are specified
by zones or sets of elements rather than by cells. The upper and lower parts
of a screened interval will be one-half of the cell thickness in length,
unless the cell in question is an upper or a lower boundary cell for the

region. Thus:

_ (Pgepy) (W 200y, * W ()L, ] (3.3.1.1a)
Mn(2)

Qw2
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In the case of an unconfined aquifer with a well screened through the free
surface, the screened length, LQ, is adjusted as the saturated thickness

varies in time.

where

L21 = %(22 -zz_l) 3 (3.3.1.1b)

-z (3.3.1.1c)

Log = %(zp0y ~2) 3

and where

is the volumetric-flow rate from the well to the aquifer in cell m
at well-bore level £ (m3/s);

p. is the pressure at node m (Pa);

is the pressure in the well bore at elevation of node m (Pa);

m(2) is the cell number associated with the well-bore level ¢;
L,., is the length of well bore in the lower half of cell m(£) (m);

and

L,, is the length of well bore in the upper half of cell m(2) (m).

Equations 3.3.1.1b and 3.3.1.1c are valid for the z-coordinate directed

vertically upward.

For wells drilled at an angle Bw to the vertical:

x(z, -z,_,)
_ 2 "2-17
Ly, = — ; (3.3.1.2a)
w
x(z,, ,-z,) ‘
_ 241 ¢
Ly = eos® 5, (3.3.1.2b)

121



The well indices may be different in the upper and lower halves of the
cell, because the porous-medium zonme boundaries pass through planes of node
points. The two-term sum in equation 3.3.1.1a accounts for this. When the
cell is at the upper or lower boundary of the region, or at the ends of the
screened interval for the well, the appropriate term in equation 3.3.1.1a

becomes zero.

For notational convenience, we define:

M, L,=M,.L

wele = Mugy M

01 ¥ Mugolgs 3 (3.3.1.3)

where Mw is the well mobility defined by equation 2.4.1.5.

Flow-rate allocation by mobility is obtained by discretizing equation
2.4.1.5 to give:

Qw sz L£
sz - ; (3-301-4)

2-5 2 MWB I‘£
L

where
QL is the index of the bottom level of the well screen; and
QU is the index of the top level of the well screen.

If the screened interval is not continuous from QL to lU’ the length, sz is
set to zero over the appropriate subintervals. For an observation well, the

dependent variable data in the aquifer are taken from the cell at location

Ry
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Flow~-rate allocation by the product of mobility and pressure difference
is obtained by discretization of equations 2.4.1.9 using equation 2.4.1.8. The

pressure at the well datum is given by (Thomas, 1982, p. 156):

nzﬁ szLR(pm + pwgzz) - Qw
— L .
Pud = i ; (3.3.1.5)

ZQ szL2

and the flow rate from the well to the aquifer at each layer is given by:

Qug = Mogloloy * pulzyy - 29 - p 15 (3.3.1.6)

where zy is the elevation of the well node at level £ (m).

Similar expressions were derived by Bennett and others (1982) for

constant-density fluids.

For simulations with a well completed in more than one layer, and
explicit calculation of the well-datum pressure, a large well index or
mobility can cause computational instabilities (Chapplear and Williamson,
1981). A large flow rate will be allocated to a layer with large mobility,
and the cell pressure can become nearly equal to the well-bore pressure. This
will make the flow-rate allocation small during the next time step, and an
oscillation may develop. To avoid a severe time-step limitation, a semi-
implicit, well flow-rate allocation can be used. It is available as a

calculation option in the HST3D program. Equation 3.3.1.6 becomes:

ntl - _
sz M Ll(pwd + p g(z wd 22) m) wl 26p . (3.3.1.7)
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This gives an implicit coefficient that is included in the matrix element
for node m in the finite-difference equations. Note that well-datum pressure
still is treated explicitly. This can put a restriction on the time step for
stability particularly when the aquifer is being stressed heavily. Also the
total flow rate in the well will not be maintained over the time step.

Therefore, iterations are necessary.

A fully implicit approach would eliminate the iterations, but would
introduce additional coefficients in the flow equation for all the cells that
were communicating with the given well. The band-width of the finite-
difference flow equations, would be increased, thus making the two matrix-
solution techniques, much more difficult to implement. However, Bennett and
others (1982) employ the fully implicit approach with a compatible matrix-

solution technique.

A compromise algorithm was developed starting from equation 3.3.1.5

expressed as a well constraint to maintain specified well-flow rate:

E M gLeOp - E M _Lép . =0. (3.3.1.8)

Equation 3.3.1.8 is written for each well in the region.

The matrix representation of the flow- and well-constraint equations being

solved simultaneously is bordered as shown by:

W

[+ g
)

Sp | 5| b1, (3.3.1.9)
X ngd o

N
[
£
[+

where
A 1is the coefficient matrix from the discretized flow equation;
¥W; is the coefficient matrix linking the pressures in each of
the cells which communicate with a well;
MWz is the coefficient matrix linking the well-datum pressures to

the flow equation through the source term;
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W3 is the coefficient matrix (diagonal) for the well-datum pressures
in the well constraint equation (eq. 3.3.1.8); and
by is the vector of known quantities from the discretized flow

equation.

The two equations are solved iteratively at each time step for Op and Qde.
The well-datum pressures are lagged one iteration in the solution of the flow

equations. The initial value for §p . is taken to be 0. The iterations are

terminated when the maximum fractionag change in Qde is less than 0.001.
Usually, only two or three iterations are required for convergence. This
algorithm has the advantage that the sparse structure of the matrix A is
preserved, so that the implemented matrix-equation solvers can be employed.
At the first time step, equation 3.3.1.4 is used to calculate the flow

rates at each layer for each well. Equation 3.3.1.6 is used thereafter.

A reversal of flow between the well and the aquifer at any layer
communicating with a well is allowed. However, difficulties arise if there is
a reversal of flow within the well bore. An algorithm to compute a realistic
density profile in the well bore under flow-reversal conditions has not yet
been developed; therefore, the following algorithm is currently used in HST3D

to compute heat and solute flow rates in a well bore.

For a production well, heat and solute balance calculations are done from
the bottom to the top of the well-screen interval. If injection occurs at a
given layer, the density, temperature, and solute concentration injected are
based on the current values coming up the well bore from below. Any fluid
flowing down the well bore to that layer is neglected. Density, temperature,
and solute concentration values based on well-datum conditions are used if
there is no upward flow in the well bore below the given injection layer.
This algorithm is suitable for producing wells which leak into the aquifer but
have net upward flow along the entire well bore. It may be a poor approxi-
mation if there are large density, temperature, or solute concentration

variations within the well and flow reversals occur in the well bore.
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For an injection well, no account is taken of the effect of producing
layers on the density, temperature, or solute concentration in the well bore.
The conditions at the well-datum level are used for all injection layers.
Clearly, this approximation is valid only for injection wells with slight
invasion from producing layers and no flow reversals in the well bore. A more

realistic algorithm will require a complex, iterative calculation.

In the present version of the HST3D simulator, when a production or in-
jection well becomes inactive, by having its flow rate set to zero, no cir-
culation of fluid from one aquifer-discretization layer to another is computed.
Removing this restriction would require the algorithm, described previously,

to handle flow reversals in the well bore.

For the case of a single well in the cylindrical-coordinate system,
equation 2.4.1.12, for the well bore, is discretized in space and time in the
same manner as the system flow equation. Flow-rate allocation by mobility and
pressure gradient or specified pressure at the well datum are the options
available. The augmented-flow equation 2.4.1.13, is discretized in space and
time in the manner that led to equation 3.1.4.la. At a node along the well

screen below the top of the screen, k<§U, the equation is:
Caadp, + C320T, + C31dw = e(TFk+32 + Tka+5)(6pk+1 - Spy)

=0 (Tpyy + Tppi-y) Oy - 0Py )

n n n
Yoy + Topry) @ra1 ™ Pid ¥ Ty Pran8(Zpeq™ 70
+T n (z - z.)
wFk+y Puk+y 8 %k+1 7 %k
n n n
Ty + Topeey) P ™ Pier) ™ Tpey, Pro38(3y 2 y)
-T n (z, - 2z )
wFk=% pwk-% glzy k-1
+ r-direction dispersive terms; (3.3.1.10a)
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where 4y 3

T = - 5 (3.3.1.10b)
wFk+% vwfw(zk+1 zk)

4nrw3
T ., = - ; (3.3.1.10¢)
wFk-% v,z -z )

and where
T _ are the conductances for flow at the well bore (m-s).

wF

For the node at the top of the well-screen interval, k=2U, the dis-

cretized, augmented flow equation (2.4.1.13) becomes:

Caabp  + C326T + C3q6w = -G(T”u"* + TwFfQU-’z) (GPQU - GPQU_I)

n n n
-(TFQU-¥ + TWFQU'x)(an - PQU_I) - TFQU-%pQU-%g(ZQU- ZQU_I)
PrQ, - Twsnu-a pzﬁu-s 3(zlu - zﬁu-l)

+ r-direction dispersive terms; (3.3.1.11)

where
Qw is the specified volumetric flow rate of the well (positive is

injection to the aquifer) (m3/s).

In the case of specified pressure at the well datum, equation 3.3.1.11

is replaced by:

Py, = Pud (3.3.1.12)
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The well-bore velocity and friction factor are calculated explicitly at

the beginning of the time step. Since the friction factor is a weak function

of velocity, this causes no instabilities. Evaluating the well-conductance
factors explicitly is consistent with the treatment of the aquifer-conductance

factors.
3.3.2 The Well-Riser Model

The well-riser calculation is done by numerically solving equation
2.4.2.11. These ordinary differential equations are integrated using the
midpoint method with rational-function extrapolation, developed by Bulirsch

and Stoer (1966) and presented by Gear (1971, p. 96).

The following algorithm is applied to the well-riser calculations:

AL
% = =2 .
PY =Py + > F(prk, Trk’ Qk) ; (3.3.2.1a)
=T +2ep., T, 8); (3.3.2.1b)
r rk 2 rk’ "rk’ k7 ? T
=p +A2F(p*T*£+¥)' (3.3.2.1c)
Prr+1 rk r’ 'r’ 7k 2 ? U
T . =T +A6(p*, T+, 2 + 2% (3.3.2.1d)
rk+1 rk r’ r’ 7k A
where
AL = £k+1 - Rk. (3.3.2.1e)
Boundary conditions are:
=0 : = p0 . = TO . = o0 2.
at k=0 ; P = Pp s Trk Tr » P =P, (3.3.2.2a,b,c)

128



The pressure at the well datum used in evaluating equation 3.3.2.2a for
production conditions is explicitly calculated at time plane n. Equations
3.3.2.1a-d are integrated over the length of the well riser, Lr’ yielding the
desired quantities pr(Lr) and Tr(Lr)' The functions F and G are evaluated by
the right-hand-side of equation 2.4.2.11 with the following equations used for

calculating density and velocity:

— A0 0 -n0Y - A0 70 .
P, =Pt PL BP(Pr p.) = PBR(T -TD) ;5 (3.3.2.3a)
)
P_Q
- 040 = I VW
PriVrk = PrVy = - (3.3.2.3b)
r

The midpoint method of integration is a second-order method, which means that
the error in pr(Lr) and Tr(Lr) decreases as (A2)2. The extrapolation
procedure improves the accuracy of the numerical integration by estimating
results for pr(Lr) and Tr(Lr) that would be obtained if the step length, Af,
were reduced to zero. Pressure and temperature at the end of the well riser
are expressed by power-series expansions as a function of step length along

the riser:

n
- 2i .
pr(Lr,Aﬂ) = pr(Lr) +i 5 . dPi AL (3.3.2.4a)
2 2i
Tr(Lr,Aﬂ) =T (Lr) +_ 2 dTi AL (3.3.2.4b)
i=1
where
dpi are the coefficients in the series expansion for
pressure (Pa/m); and (3.3.2.4¢)
dTi are the coefficients in the series expansion for
temperature (°C/m). (3.3.2.44)
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Equations 3.3.2.4a and 3.3.2.4b can be written in vector form by

defining:
p.(L.,A)
Z(Lr,AR) =11 (L_,A0) (3.3.2.5a)
rr
dpi
Y, = la.. (3.3.2.5b)
Ti
so that:
? 2i
Z(Lr,Aﬂ) = Z(Lr) + X Y, AL (3.3.2.6)

1

The right-hand-side of equation 3.3.2.6 is approximated by a rational
function, gm, that is, a quotient of two polynomials. The coefficients of the

rational function are determined so that:
gm(Lr,ij) = X(Lr,Alj) sy J=0,1...m (3.3.2.7)

where

Aﬂj is the spatial-step length for the jth integration from 0 to L (m).

Then, the desired solution, Y(L), is reléted to the approximating
rational function by:

¥(®,) = R (L_,0) ' (3.3.2.8)

The algorithm is formed by defining Ri (A2) as the rational approximation

.y Akj

and defining Ri(o) = Ri. Then the R; give better approximations to X(Lr) as j

which agrees with z(Lr,Az) at A2 = Azj, Azj +m’ where A£j>A£j+1,

+1?

and(or) m increase. The extrapolation procedure is initiated by integrating
equations (3.3.2.1 a-d) for a sequence of step lengths, L/2, L/4, L/6, L/8,

... to obtain values for R °, Rol, Roz, .v.. Values of Ri for increasing j
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and m are calculated by the recurrence relation given in Gear, 1971, p. 95.
m-k

The procedure is terminated when two successive approximations, Rk and
m-k+1 . . .
Rk , are sufficiently close. The tolerance estimate for the fractional

error can be set by the user with a default value of 1073,

Depending on the rate of convergence, the step size may be increased or
decreased for successive well-riser calculations. Sixth-order polynomials are
the maximum order used for the rational approximation with a maximum of 10

different step sizes.

3.4 BOUNDARY CONDITIONS

All boundary conditions are specified on a cell-by-cell rather than on a
zone-by-zone basis. The default-boundary condition is that of no dispersive
or advective flux through the boundary faces of the cell. For a cell with
three boundary faces, up to three different types of flux-boundary conditions
can be applied, each to a different face. For example, a specified flux, an
aquifer-influence function, and a leakage-boundary condition could be applied

to the faces of a corner cell.

3.4.1 Specified Pressure, Temperature, and Solute-Mass Fraction

Specified-value boundary conditions are incorporated by replacing the
flow and transport equations for those nodes, by equations of the form of
equation 3.1.1c defining the specified values. These nodes could be removed
from the set of simultaneous equations to be solved, by incorporating the
known boundary values into the remaining equations; that has not been done in
the present version of the HST3D simulator. For boundary conditions that
change discontinuously with time, the value at time t® is taken to be the
limit of the value at t" - 6t, as 6t » 0; that is, the jump in the boundary-
condition value takes place after the time of change. This means that the
effective value of a boundary condition over a time interval when a change
occurs is the average value under centered-in-time differencing and the later
value under backward-in-time differencing.
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It should be noted that an initial hydrostatic-pressure boundary condi-
tion over depth will not be maintained under conditions of variable-density
flow. Specification of hydrostatic-pressure boundary conditions over depth
using a uniform initial density can cause disconcertingly large vertical flows
to occur, when realistic fluid compressibility effects are incorporated during
the simulation. Even if the compressibility is very small, the boundary
pressure values need to be specified to four or five significant digits to

avoid vertical flows caused by roundoff error.

Since a specified-value boundary condition removes the equation for the
corresponding variable (pressure, temperature, or mass fraction) from the set
to be solved, some constraints do exist on what boundary conditions can be
specified for a cell that has more than one boundary face. For example, if
the pressure is specified, then the ability to specify a fluid flux, an
aquifer-influence function, or a leakage boundary condition on the other

boundary faces is lost.

3.4.2 Specified-Flux Boundary Conditions

Discretization of the flow equations and transport equations causes the
specified-flux boundary conditions to be incorporated as source terms in the
finite-difference equations, as described by equation 3.1.1.25a and b. The
specified fluxes are input as vector components at each of the respective
boundary faces. Thus they are described on a cell-face basis, not by zone
boundary. Fluid fluxes are input as volume fluxes; heat fluxes are input as

energy fluxes; solute fluxes are input as mass fluxes.

Recall that a boundary cell can have up to three boundary faces, each
with an outward normal vector pointing in one of the coordinate directioms.
The flux-vector components can specify flux only through a face whose normal
is parallel to the vector component. Thus, the number of specified-flux
vector components must be less than or equal to the number of boundary faces
for a given cell. If the normal and the vector component point in opposite
directions, flux is added to the boundary cell; if they point in the same

direction, flux is withdrawn.
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A persistent numerical error can arise in the case where only specified-
flux boundary conditions are employed for the entire region, because of the
occurance of a zero eigenvalue for the discretized equation (Mitchell, 1969,
p. 39-44). Errors generated by discontinuous changes in the boundary condi;
tions with time or by discontinuities between the initial conditions and the
boundary conditions will persist. If a specified-value boundary condition or
flux-dependent-on-value boundary condition is applied over some part of the

boundary, this problem vanishes, because the zero eigenvalue disappears.

A one-dimensional analysis shows that the integral form of derivation
used for the specified-flux boundary conditions gives a discretization error
of order AtAx. Thus, the finite-difference equations are only first-order

accurate at the boundary cells in terms of specified flux.

3.4.3 Leakage-Boundary Conditions

Leakage-boundary conditions are transformed into source-sink terms in a
similar fashion to specified-flux conditions. They also are incorporated on a
cell basis rather than on a zone basis. Equations 2.5.3.1.la-c and

2.5.3.2.1a-c, when applied on a discrete grid, become for boundary cell, m:

*Lm

- _Lm _ .. n
Um = b [(p0), - (o, *+ P_82,) (3.4.3.1a)
n
- (p-p)8(z,* 2 /2] Sp;
K
Lm
- 5§
mebLm BLm Pm H
Qu = YR (3.4.3.1b)
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where

QLm is the volumetric flow rate at a leakage boundary (m3/s);
QRm

SBLm is the part of the boundary cell surface that is a leakage

is the volumetric flow rate at a river-leakage boundary (m3/s); and
boundary (m?).
The leakage-flow rate, of equation 3.4.3.1a, has an explicit term for the

right-hand-side of the discretized system-flow equation, 3.1.4.l1la, and an

implicit factor for the left-hand-side.

3.4.4 Aquifer-Influence-Function Boundary Conditions

3.4.4.1 Pot-Aquifer-Influence Function

The aquifer-influence-function boundary conditions for a pot aquifer are
discretized by writing equation 2.5.4.1.1 for each cell face over which the

pot-aquifer boundary condition applies. Let there be MA pot-aquifer boundary

condition cells. Then:
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